首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   11篇
电工技术   7篇
化学工业   69篇
金属工艺   3篇
机械仪表   4篇
建筑科学   3篇
能源动力   4篇
轻工业   53篇
无线电   8篇
一般工业技术   29篇
冶金工业   12篇
自动化技术   15篇
  2022年   16篇
  2021年   11篇
  2020年   5篇
  2019年   2篇
  2018年   8篇
  2017年   6篇
  2016年   7篇
  2015年   4篇
  2014年   8篇
  2013年   18篇
  2012年   13篇
  2011年   16篇
  2010年   14篇
  2009年   12篇
  2008年   14篇
  2007年   10篇
  2006年   2篇
  2005年   2篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1981年   2篇
  1980年   1篇
  1972年   1篇
排序方式: 共有207条查询结果,搜索用时 31 毫秒
41.
42.
Foodborne illness represents a major economic burden worldwide and a serious public health threat, with around 48 million people affected and 3,000 death each year only in the USA. One of the possible strategies to reduce foodborne infections is the development of effective preservation strategies capable of eradicating microbial contamination of foods. Over the last years, new challenges for the food industry have arisen such as the increase of antimicrobial resistance of foodborne pathogens to common preservatives and consumers demand for naturally based products. In order to overcome this, new approaches using natural or bio-based products as food preservatives need to be investigated. Coriander (Coriandrum sativum L.) is a well-known herb widely used as spice, or in folk medicine, and in the pharmacy and food industries. Coriander seed oil is the world's second most relevant essential oil, exhibiting antimicrobial activity against Gram-positive and Gram-negative bacteria, some yeasts, dermatophytes and filamentous fungi. This review highlights coriander oil antimicrobial activity and possible mechanisms of action in microbial cells and discusses the ability of coriander oil usage as a food preservative, pointing out possible paths for the successful evolution for these strategies towards a successful development of a food preservation strategy using coriander oil.  相似文献   
43.
This study investigated the interfacial structure of solid state diffusion bonding of TiNi to Ti6Al4V using reactive Ni/Ti multilayer thin films. The TiNi and Ti6Al4V surfaces were modified by sputtering, by deposition of alternated Ni and Ti nanolayers, to increase the diffusivity at the interface. Bonding experiments were performed at 750, 800 and 900 °C at a pressure of 10 MPa with a dwell time of 60 min. The reaction zone was characterized by high-resolution scanning and transmission electron microscopy. Joints free from porosity and cracks were produced with Ni/Ti reactive multilayer thin films. Several phases formed at the interface, ensuring the bonding of these alloys. The reaction zone was constituted by columnar grains of Ti2Ni and AlNi2Ti, close to the Ti6Al4V base material, and by alternate layers of Ti2Ni and TiNi equiaxed grains. The grain size decreased from Ti6Al4V to TiNi base materials. Nanometric grains were observed in the layers closest to the TiNi base material.  相似文献   
44.
[Figure: see text]. Laser ablation harnesses photon energy to remove material from a surface. Although applications such as laser-assisted in situ keratomileusis (LASIK) surgery, lithography, and nanoscale device fabrication take advantage of this process, a better understanding the underlying mechanism of ablation in polymeric materials remains much sought after. Molecular simulation is a particularly attractive technique to study the basic aspects of ablation because it allows control over specific process parameters and enables observation of microscopic mechanistic details. This Account describes a hybrid molecular dynamics-Monte Carlo technique to simulate laser ablation in poly(methyl methacrylate) (PMMA). It also discusses the impact of thermal and chemical excitation on the ensuing ejection processes. We used molecular dynamics simulation to study the molecular interactions in a coarse-grained PMMA substrate following photon absorption. To ascertain the role of chemistry in initiating ablation, we embedded a Monte Carlo protocol within the simulation framework. These calculations permit chemical reactions to occur probabilistically during the molecular dynamics calculation using predetermined reaction pathways and Arrhenius rates. With this hybrid scheme, we can examine thermal and chemical pathways of decomposition separately. In the simulations, we observed distinct mechanisms of ablation for each type of photoexcitation pathway. Ablation via thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case in which an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. A detailed analysis of the processes shows that a critical energy for ablation can describe this complex series of events. The simulations show a decrease in the critical energy with a greater amount of photochemistry. Additionally, the simulations demonstrate the effects of the energy deposition rate on the ejection mechanism. When the energy is deposited rapidly, not allowing for mechanical relaxation of the sample, the formation of a pressure wave and subsequent tensile wave dominates the ejection process. This study provides insight into the influence of thermal, chemical, and mechanical processes in PMMA and facilitates greater understanding of the complex nature of polymer ablation. These simulations complement experiments that have used chemical design to harness the photochemical properties of materials to enhance laser ablation. We successfully fit the results of the simulations to established analytical models of both photothermal and photochemical ablation and demonstrate their relevance. Although the simulations are for PMMA, the mechanistic concepts are applicable to a large range of systems and provide a conceptual foundation for interpretation of experimental data.  相似文献   
45.
Serum albumin is one of the most widely studied proteins. It is the most abundant protein in plasma with a typical concentration of 5 g/100 mL and the principal transporter of fatty acids in plasma. While the crystal structures of human serum albumin (HSA) free and in complex with fatty acids, hemin, and local anesthetics have been characterized, no crystallographic models are available on bovine serum albumin (BSA), presumably because of the poor diffraction power of existing hexagonal BSA crystals. Here, the crystallization and diffraction data of a new BSA crystal form, obtained by the hanging drop method using MPEG 5K as precipitating agent, are presented. The crystals belong to space group C2, with unit-cell parameters a = 216.45 Å, b = 44.72 Å, c = 140.18 Å, β = 114.5°. Dehydration was found to increase the diffraction limit of BSA crystals from ~8 Å to 3.2 Å, probably by improving the packing of protein molecules in the crystal lattice. These results, together with a survey of more than 60 successful cases of protein crystal dehydration, confirm that it can be a useful procedure to be used in initial screening as a method of improving the diffraction limits of existing crystals.  相似文献   
46.
Key features of chronic lymphocytic leukemia (CLL) are defects in the immune system and the ability of leukemic cells to evade immune defenses and induce immunosuppression, resulting in increased susceptibility to infections and disease progression. Several immune effectors are impaired in CLL, including T and natural killer (NK) cells. The role of T cells in defense against CLL and in CLL progression and immunotherapy has been extensively studied. Less is known about the role of NK cells in this leukemia, and data on NK cell alterations in CLL are contrasting. Besides studies showing that NK cells have intrinsic defects in CLL, there is a large body of evidence indicating that NK cell dysfunctions in CLL mainly depend on the escape mechanisms employed by leukemic cells. In keeping, it has been shown that NK cell functions, including antibody-dependent cellular cytotoxicity (ADCC), can be retained and/or restored after adequate stimulation. Therefore, due to their preserved ADCC function and the reversibility of CLL-related dysfunctions, NK cells are an attractive source for novel immunotherapeutic strategies in this disease, including chimeric antigen receptor (CAR) therapy. Recently, satisfying clinical responses have been obtained in CLL patients using cord blood-derived CAR-NK cells, opening new possibilities for further exploring NK cells in the immunotherapy of CLL. However, notwithstanding the promising results of this clinical trial, more evidence is needed to fully understand whether and in which CLL cases NK cell-based immunotherapy may represent a valid, alternative/additional therapeutic option for this leukemia. In this review, we provide an overview of the current knowledge about phenotypic and functional alterations of NK cells in CLL and the mechanisms by which CLL cells circumvent NK cell-mediated immunosurveillance. Additionally, we discuss the potential relevance of using NK cells in CLL immunotherapy.  相似文献   
47.
Radiofrequency coils in Magnetic Resonance systems are used to produce a homogeneous B1 field for exciting the nuclei and to pick up the signals emitted by the nuclei with high signal-to-noise ratio. Accordingly, coil performance affects strongly the quality of the obtained data and images.  相似文献   
48.
A set of guanine-rich aptamers able to preferentially recognize full-length huntingtin with an expanded polyglutamine tract has been recently identified, showing high efficacy in modulating the functions of the mutated protein in a variety of cell experiments. We here report a detailed biophysical characterization of the best aptamer in the series, named MS3, proved to adopt a stable, parallel G-quadruplex structure and show high nuclease resistance in serum. Confocal microscopy experiments on HeLa and SH-SY5Y cells, as models of non-neuronal and neuronal cells, respectively, showed a rapid, dose-dependent uptake of fluorescein-labelled MS3, demonstrating its effective internalization, even in the absence of transfecting agents, with no general cytotoxicity. Then, using a well-established Drosophila melanogaster model for Huntington’s disease, which expresses the mutated form of human huntingtin, a significant improvement in the motor neuronal function in flies fed with MS3 was observed, proving the in vivo efficacy of this aptamer.  相似文献   
49.
50.
In recent years, the knowledge about the immune-mediated impairment of bone marrow precursors in immune-dysregulation and autoimmune disorders has increased. In addition, immune-dysregulation, secondary to marrow failure, has been reported as being, in some cases, the most evident and early sign of the disease and making the diagnosis of both groups of disorders challenging. Dyskeratosis congenita is a disorder characterized by premature telomere erosion, typically showing marrow failure, nail dystrophy and leukoplakia, although incomplete genetic penetrance and phenotypes with immune-dysregulation features have been described. We report on a previously healthy 17-year-old girl, with a cousin successfully treated for acute lymphoblastic leukemia, who presented with leukopenia and neutropenia. The diagnostic work-up showed positive anti-neutrophil antibodies, leading to the diagnosis of autoimmune neutropenia, a slightly low NK count and high TCR-αβ+-double-negative T-cells. A next-generation sequencing (NGS) analysis showed the 734C>A variant on exon 6 of the TINF2 gene, leading to the p.Ser245Tyr. The telomere length was short on the lymphocytes and granulocytes, suggesting the diagnosis of an atypical telomeropathy showing with immune-dysregulation. This case underlines the importance of an accurate diagnostic work-up of patients with immune-dysregulation, who should undergo NGS or whole exome sequencing to identify specific disorders that deserve targeted follow-up and treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号