首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5828篇
  免费   386篇
  国内免费   53篇
电工技术   71篇
综合类   68篇
化学工业   1549篇
金属工艺   89篇
机械仪表   152篇
建筑科学   219篇
矿业工程   38篇
能源动力   196篇
轻工业   1122篇
水利工程   61篇
石油天然气   58篇
武器工业   2篇
无线电   410篇
一般工业技术   822篇
冶金工业   272篇
原子能技术   18篇
自动化技术   1120篇
  2024年   16篇
  2023年   76篇
  2022年   207篇
  2021年   289篇
  2020年   172篇
  2019年   220篇
  2018年   239篇
  2017年   221篇
  2016年   244篇
  2015年   191篇
  2014年   281篇
  2013年   456篇
  2012年   394篇
  2011年   470篇
  2010年   332篇
  2009年   306篇
  2008年   299篇
  2007年   288篇
  2006年   195篇
  2005年   192篇
  2004年   147篇
  2003年   138篇
  2002年   122篇
  2001年   71篇
  2000年   71篇
  1999年   72篇
  1998年   128篇
  1997年   87篇
  1996年   55篇
  1995年   42篇
  1994年   39篇
  1993年   28篇
  1992年   28篇
  1991年   21篇
  1990年   22篇
  1989年   19篇
  1988年   8篇
  1987年   4篇
  1986年   3篇
  1985年   11篇
  1984年   7篇
  1983年   6篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   6篇
  1977年   11篇
  1976年   5篇
  1975年   4篇
排序方式: 共有6267条查询结果,搜索用时 12 毫秒
111.
Currently, myofascial pain has become one of the main problems in healthcare systems. Research into its causes and the structures related to it may help to improve its management. Until some years ago, all the studies were focused on muscle alterations, as trigger points, but recently, fasciae are starting to be considered a new, possible source of pain. This systematic review has been conducted for the purpose of analyze the current evidence of the muscular/deep fasciae innervation from a histological and/or immunohistochemical point of view. A literature search published between 2000 and 2021 was made in PubMed and Google Scholar. Search terms included a combination of fascia, innervation, immunohistochemical, and different immunohistochemical markers. Of the 23 total studies included in the review, five studies were performed in rats, four in mice, two in horses, ten in humans, and two in both humans and rats. There were a great variety of immunohistochemical markers used to detect the innervation of the fasciae; the most used were Protein Gene Marker 9.5 (used in twelve studies), Calcitonin Gene-Related Peptide (ten studies), S100 (ten studies), substance P (seven studies), and tyrosine hydroxylase (six studies). Various areas have been studied, with the thoracolumbar fascia being the most observed. Besides, the papers highlighted diversity in the density and type of innervation in the various fasciae, going from free nerve endings to Pacini and Ruffini corpuscles. Finally, it has been observed that the innervation is increased in the pathological fasciae. From this review, it is evident that fasciae are well innerved, their innervation have a particular distribution and precise localization and is composed especially by proprioceptors and nociceptors, the latter being more numerous in pathological situations. This could contribute to a better comprehension and management of pain.  相似文献   
112.
The single crystalline nanostructure of organic semiconductors provides a very promising class of materials for applications in modern optoelectronic devices. However, morphology control and optoelectronic property modulation of high quality single crystalline samples remain a challenge. Here, we report the morphology-controlled growth of single crystalline nanorod arrays of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). We demonstrate that, unlike PTCDA film, PTCDA nanorods exhibits optical waveguide features, enhanced absorption, and Frenkel excitation emission in the visible region. Additionally, we measured the electrical properties of PTCDA nanorods, including the conductivity along the growth direction of the nanorod, which is roughly 0.61 S·m–1 (much higher than that of pure crystalline PTCDA films).
  相似文献   
113.
透明超疏水涂膜不但具有超疏水表面的独特性能,而且对可见光具有良好的透光性,在生产和生活中有着广泛的应用潜力,已逐步成为超疏水表面领域的一个研究热点。介绍了超疏水涂膜的透明性,并归纳了近年来透明超疏水涂膜制备方法取得的新进展。根据现有的理论和研究,提出利用氟硅烷类低表面能物质,与溶胶-凝胶法、相分离技术、等离子体刻蚀等能提供表面微观结构和粗糙度的技术有机结合,并控制好粗糙度与可见光透过率之间的关系,可制备出适用的透明超疏水涂膜。  相似文献   
114.
The direct conversion of solar energy into fuels or feedstock is an attractive approach to address increasing demand of renewable energy sources. Photocatalytic systems relying on the direct photoexcitation of metals have been explored to this end, a strategy that exploits the decay of plasmonic resonances into hot carriers. An efficient hot carrier generation and collection requires, ideally, their generation to be enclosed within few tens of nanometers at the metal interface, but it is challenging to achieve this across the broadband solar spectrum. Here the authors demonstrate a new photocatalyst for hydrogen evolution based on metal epsilon‐near‐zero metamaterials. The authors have designed these to achieve broadband strong light confinement at the metal interface across the entire solar spectrum. Using electron energy loss spectroscopy, the authors prove that hot carriers are generated in a broadband fashion within 10 nm in this system. The resulting photocatalyst achieves a hydrogen production rate of 9.5 µmol h?1 cm?2 that exceeds, by a factor of 3.2, that of the best previously reported plasmonic‐based photocatalysts for the dissociation of H2 with 50 h stable operation.  相似文献   
115.
Various treatments based on drug administration and radiotherapy have been devoted to preventing, palliating, and defeating cancer, showing high efficiency against the progression of this disease. Recently, in this process, malignant cells have been found which are capable of triggering specific molecular mechanisms against current treatments, with negative consequences in the prognosis of the disease. It is therefore fundamental to understand the underlying mechanisms, including the genes—and their signaling pathway regulators—involved in the process, in order to fight tumor cells. Long non-coding RNAs, H19 in particular, have been revealed as powerful protective factors in various types of cancer. However, they have also evidenced their oncogenic role in multiple carcinomas, enhancing tumor cell proliferation, migration, and invasion. In this review, we analyze the role of lncRNA H19 impairing chemo and radiotherapy in tumorigenesis, including breast cancer, lung adenocarcinoma, glioma, and colorectal carcinoma.  相似文献   
116.
117.
利用声波、地震波CT中广泛应用的SIRT法对BPT法进行改进,用“dij/li”替换“dij”作为第i条射线在第j个网格中的权值,使那些较小的dij(dij=li)在传统的BPT法中权值微小,而在改进型BPT法中却有最大的权值,用其计算结果作为CT反演计算的初值,同时将BPT法融合到SIRT法中去,使射线与网格符合“近则优”的原则,称之为改进型SIRT法,能起到有效地压制野外资料的外界干扰影响。该方法于电磁波CT在生产实践应用中取得显著成效。  相似文献   
118.
In pretreatment tumor samples of EGFR-mutated non-small cell lung cancer (NSCLC) patients, EGFR-Thr790Met mutation has been detected in a variable prevalence by different ultrasensitive assays with controversial prognostic value. Furthermore, its detection in liquid biopsy (LB) samples remains challenging, being hampered by the shortage of circulating tumor DNA (ctDNA). Here, we describe the technical validation and clinical implications of a real-time PCR with peptide nucleic acid (PNA-Clamp) and digital droplet PCR (ddPCR) for EGFR-Thr790Met detection in diagnosis FFPE samples and in LB. Limit of blank (LOB) and limit of detection (LOD) were established by analyzing negative and low variant allele frequency (VAF) FFPE and LB specimens. In a cohort of 78 FFPE samples, both techniques showed an overall agreement (OA) of 94.20%. EGFR-Thr790Met was detected in 26.47% of cases and was associated with better progression-free survival (PFS) (16.83 ± 7.76 vs. 11.47 ± 1.83 months; p = 0.047). In LB, ddPCR was implemented in routine diagnostics under UNE-EN ISO 15189:2013 accreditation, increasing the detection rate of 32.43% by conventional methods up to 45.95%. During follow-up, ddPCR detected EGFR-Thr790Met up to 7 months before radiological progression. Extensively validated ultrasensitive assays might decipher the utility of pretreatment EGFR-Thr790Met and improve its detection rate in LB studies, even anticipating radiological progression.  相似文献   
119.
Advances in research have boosted therapy development for congenital disorders of glycosylation (CDG), a group of rare genetic disorders affecting protein and lipid glycosylation and glycosylphosphatidylinositol anchor biosynthesis. The (re)use of known drugs for novel medical purposes, known as drug repositioning, is growing for both common and rare disorders. The latest innovation concerns the rational search for repositioned molecules which also benefits from artificial intelligence (AI). Compared to traditional methods, drug repositioning accelerates the overall drug discovery process while saving costs. This is particularly valuable for rare diseases. AI tools have proven their worth in diagnosis, in disease classification and characterization, and ultimately in therapy discovery in rare diseases. The availability of biomarkers and reliable disease models is critical for research and development of new drugs, especially for rare and heterogeneous diseases such as CDG. This work reviews the literature related to repositioned drugs for CDG, discovered by serendipity or through a systemic approach. Recent advances in biomarkers and disease models are also outlined as well as stakeholders’ views on AI for therapy discovery in CDG.  相似文献   
120.
NK degranulation plays an important role in the cytotoxic activity of innate immunity in the clearance of intracellular infections and is an important factor in the outcome of the disease. This work has studied NK degranulation and innate immunological profiles and functionalities in COVID-19 patients and its association with the severity of the disease. A prospective observational study with 99 COVID-19 patients was conducted. Patients were grouped according to hospital requirements and severity. Innate immune cell subpopulations and functionalities were analyzed. The profile and functionality of innate immune cells differ between healthy controls and severe patients; CD56dim NK cells increased and MAIT cells and NK degranulation rates decreased in the COVID-19 subjects. Higher degranulation rates were observed in the non-severe patients and in the healthy controls compared to the severe patients. Benign forms of the disease had a higher granzymeA/granzymeB ratio than complex forms. In a multivariate analysis, the degranulation capacity resulted in a protective factor against severe forms of the disease (OR: 0.86), whereas the permanent expression of NKG2D in NKT cells was an independent risk factor (OR: 3.81; AUC: 0.84). In conclusion, a prompt and efficient degranulation functionality in the early stages of infection could be used as a tool to identify patients who will have a better evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号