This paper describes an application of Fourier transform (FT) voltammetry that provides a quantitative evaluation of the electron-transfer kinetics of protein molecules attached to electrode surfaces. The potential waveform applied in these experiments consists of a large-amplitude square wave of frequency f superimposed onto the traditional triangular voltage used in dc cyclic voltammetry. The resultant current-time response, when Fourier transformed into the frequency domain, provides patterns of data at the even harmonic frequencies that arise from nonlinearity in the Faradaic response. These even harmonic contributions are ideally suited for kinetic evaluation of electron-transfer processes because they are highly selective to quasi-reversible behavior (insensitive to reversible or irreversible processes) and almost devoid of background charging current. Inverse FT methods can then be used to provide the wave shapes of the dc as well as the ac voltammetric components and other characteristics employed to detect the level of nonideality present relative to theoretical models based upon noninteracting surface-confined molecules. The new form of data evaluation has been applied to the electron-transfer properties of a typical biological electron carrier, the blue copper protein azurin, immobilized on polycrystalline gold electrodes modified with self-assembled monolayers of different length alkanethiols. Details of the electrode kinetics (rates of electron transfer, dispersion, and charge-transfer coefficients) as a function of alkanethiol, apparent surface coverage, and capacitance are all deduced from the square wave (FT-inverse FT) protocol, and the implications of these findings are considered. 相似文献
Single-wall carbon nanotube (SWNT) field effect transistors (FETs), functionalized noncovalently with a zinc porphyrin derivative, were used to directly detect a photoinduced electron transfer (PET) within a donor/acceptor (D/A) system. We report here that the SWNTs act as the electron donor and the porphyrin molecules as the electron acceptor. The magnitude of the PET was measured to be a function of both the wavelength and intensity of applied light, with a maximum value of 0.37 electrons per porphyrin for light at 420 nm and 100 W/m2. A complete understanding of the photophysics of this D/A system is necessary, as it may form the basis for applications in artificial photosynthesis and alternative energy sources such as solar cells. 相似文献
To investigate self-reported driving difficulty before and after first eye cataract surgery and determine which visual measures are associated with changes in self-reported driving difficulty after surgery.
Methods
A cohort of 99 older drivers with bilateral cataract were assessed the week before and 12 weeks after first eye cataract surgery. Visual measures including visual acuity, contrast sensitivity, stereopsis and useful field of view were assessed. Self-reported driving difficulty was measured via the Driving Habits Questionnaire. Cognitive status was assessed using the Mini Mental State Examination. Regression analysis was undertaken to determine the association between changes in visual measures and self-reported driving difficulty after first eye cataract surgery.
Results
Overall, self-reported driving difficulty improved after first eye cataract surgery. However, 16% of participants did not improve and driving difficulty worsened in 11% following surgery. Improvement in driving difficulty score after first eye cataract surgery was associated with improved contrast sensitivity in the operated eye (p < 0.001), new glasses after surgery (p < 0.001), and fewer chronic health conditions (p = 0.016).
Conclusion
Contrast sensitivity rather than visual acuity was a significant factor affecting change in self-reported driving difficulty after first eye cataract surgery for bilateral patients. This has implications for driver licensing authorities worldwide that rely heavily on visual acuity as a measure of visual fitness to drive. 相似文献
Fast neutron radiography is a non-destructive testing technique with a variety of industrial applications and the capability for element sensitive imaging for contraband and explosives detection.
Commonly used position sensitive detectors for fast neutron radiography are based on charge coupled devices (CCDs) and scintillators. The limited format of CCDs implies that complex optical systems involving lenses and mirrors are required to indirectly image areas that are larger than 8.6 cm×11.05 cm. The use of optics reduces the light collection efficiency of the imaging system, while the efficiency of hydrogen rich scintillators exploiting the proton recoil reaction is limited by the hydrogen concentration and the magnitude of the neutron scattering cross-section.
The light conversion step inevitably involves a tradeoff in scintillator thickness between light yield and spatial resolution.
The development of large area amorphous silicon (a-Si) panel flat panel photodiode arrays and direct neutron-to-charge converters based on microchannel plates, provide an attractive new form of high resolution, large area, fast neutron imaging detector for the non-destructive imaging of large structures. This paper describes some recent results of both Monte Carlo simulations and measurements for such a detector. 相似文献
Drawing on the education, enrollment, and assignment experiences of seven states with mandatory Medicaid managed care programs, this paper finds that the vast majority of enrollees will choose their own health plan if the system is explicitly designed with this in mind (as in Minnesota and Oregon). These experiences provide lessons on ways to 1) align program design with state priorities; (2) increase the level of choice (by coordinating enrollment and eligibility processes, broad-based educational strategies, and personalized attention); (3) improve the quality of choice; and (4) design state contracting processes to support choice and continuity of care. 相似文献
The effects of polyunsaturated fatty acids (PUFA) on the structure of recombinant high density lipoprotein (rHDL) was investigated using homogeneous particles containing phosphatidylcholine (PC), [3H]cholesterol, and apolipoprotein A-I (apoA-I). The PC component of the rHDL contained sn -1 16:0 and sn -2 18:1 (POPC), 18:2 (PLPC), 20:4 (PAPC), 20:5 n-3 (PEPC), or 22:6 n-3 (PDPC). The concentration of guanidine HCl (D1/2) required to denature one-half of the apoA-I on rHDL containing long chain PUFA was reduced (1.57-1.70 m) compared to those containing POPC (2.83 m). Intrinsic apoA-I tryptophan fluorescence emission intensity and lifetimes were decreased for rHDL containing long chain PUFA compared to POPC and PLPC rHDL. Monoclonal antibody binding studies demonstrated that apoA-I had decreased immunoreactivity with monoclonal antibodies spanning amino acid residues 115-147 in rHDL containing long chain PUFA. PC lipid fluidity, measured as diphenylhexatriene (DPH) fluorescence polarization, was increased in PUFA rHDL compared to POPC rHDL. There also was a strong correlation between the number of sn -2 double bonds in rHDL and DPH fluorescence lifetime (r 2 = 0. 89). LCAT reactivity of the homogeneous size rHDL was ordered POPC = PLPC>PAPC> PEPC>PDPC. We conclude that rHDL with long chain PUFA in the sn -2 position of PC contain apoA-I that is less stable and in a different conformation than that in POPC rHDL and have a fatty acyl region that is more fluid and hydrated. The weaker interaction of apoA-I with PC containing PUFA may lead to hypercatabolism of apoA-I in plasma explaining, in part, the decreased plasma HDL and apoA-I concentrations seen with PUFA diets. 相似文献
Spines are specialized neuronal membrane structures, often localized at sites where synaptic information is relayed from one cell to another in the central nervous system. By electron immunomicroscopy we have found that the mammalian Shaw family potassium channel Kv3.1 is localized on spine-like protrusions, adjacent to postsynaptic membranes of bushy cells in the cochlear nucleus. As direct characterization of the electrophysiological behavior of ion channels in such structures is difficult, we have used Kv3. 1-transfected CHO cells to create artificial spine-like membrane compartments. Membrane patches were sucked into microelectrodes to form small, cell-attached vesicles with dimensions comparable to those of the neuronal structures. Currents mediated by the Kv3.1 channel in these vesicles undergo rapid and complete inactivation, in contrast to their noninactivating behavior in whole-cell recordings. This apparent inactivation is caused by the rapid depletion of K+ from the vesicle and the slow refilling of K+ into the vesicle compartment from the bulk cytoplasm. Our data provide evidence that compartmentalized ionic transients can be generated in spine-like membrane structures and support the view that the localization of ion channels in spine-like structures may influence responses to synaptic stimulation. 相似文献
Our purpose is to assess whether genotypes of the vitamin D receptor (VDR) and estrogen receptor (ER) and their interaction influence changes in bone mass in postmenopausal Caucasian women with and without hormone replacement therapy (HRT). A population of 108 US Mid-West women who participated in a study of low-dose continuous estrogen/progestin was genotyped at the VDR BsmI site and the ER XbaI and PvuII sites. Adequate vitamin D and calcium nutritional intakes were assured in all the study subjects. For the 3.5-year duration of the study, we analyzed changes in bone mineral density (BMD) at the spine, femoral neck, distal radius, and the total body (total body bone mineral content, tbBMC). We adjusted for confounding factors, such as age and weight, in the analysis. We found that VDR and/or ER genotypes and/or their interaction generally had significant effects on the changes in the bone mass measurements in both the placebo and HRT groups. When a significant gene-by-gene interaction exists between VDR and ER genotypes, failure to account for them in analyses may yield nonsignificant results, even if significant genotypic effects exist. The amount of variation in changes in bone mass measurements explained by the total genotypic effects of the VDR and ER loci varies from approximately 1.0% (for the tbBMC changes in combined placebo and HRT groups) to approximately 18.7% (for the spine BMD changes in the HRT group). These results suggest that individual genotypes are important factors in determining changes in bone mass in the elderly with and without HRT and thus may need to be considered with respect to the treatment to preserve bone mass in elderly Caucasian women. 相似文献