首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   47篇
电工技术   2篇
化学工业   21篇
金属工艺   4篇
机械仪表   2篇
轻工业   2篇
无线电   27篇
一般工业技术   91篇
冶金工业   12篇
自动化技术   10篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   5篇
  2019年   7篇
  2018年   11篇
  2017年   3篇
  2016年   12篇
  2015年   14篇
  2014年   14篇
  2013年   9篇
  2012年   13篇
  2011年   9篇
  2010年   3篇
  2009年   7篇
  2008年   2篇
  2007年   13篇
  2006年   8篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1999年   2篇
  1998年   7篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有171条查询结果,搜索用时 46 毫秒
131.
Very dense and uniformly distributed nitrogen-doped tungsten oxide (WO(3)) nanowires were synthesized successfully on a 4-inch Si(100) wafer at low temperature. The nanowires were of lengths extending up to 5 mum and diameters ranging from 25 to 35 nm. The highest aspect ratio was estimated to be about 200. An emission peak at 470 nm was found by photoluminescence measurement at room temperature. The suggested growth mechanism of the nanowires is vapor-solid growth, in which gaseous ammonia plays a significant role to reduce the formation temperature. The approach has proved to be a reliable way to produce nitrogen-doped WO(3) nanowires on Si in large quantities. The direct fabrication of WO(3)-based nanodevices on Si has been demonstrated.  相似文献   
132.
This work presents the systematic studies of bulk hybrid heterojunction solar cells based on Cu(In, Ga)Se2 (CIGS) nanocrystals (NCs) embedded in poly(3-hexylthiophene) matrix. The CIGS NCs of approximately 17 nm in diameter were homogeneously blended with P3HT layer to form an active layer of a photovoltaic device. The blend ratios of CIGS NCs to P3HT, solvent effects on thin film morphologies, interface between P3HT/CIGS NCs and post-production annealing of devices were investigated, and the best performance of photovoltaic devices was measured under AM 1.5 simulated solar illumination (100 mW/cm2).  相似文献   
133.
In this work, a high‐performance ITO‐free flexible polymer solar cell (PSC) is successfully described by integrating the plasmonic effect into the ITO‐free microcavity architecture. By carefully controlling the sizes of embedded Ag nanoprisms and their doping positons in the stratified device, a significant enhancement in power conversion efficiency (PCE) is shown from 8.5% (reference microcavity architecture) to 9.4% on flexible substrates. The well‐manipulated plasmonic resonances introduced by the embedded Ag nanoprisms with different LSPR peaks allow the complementary light‐harvesting with microcavity resonance in the regions of 400–500 nm and 600–700 nm, resulting in the substantially increased photocurrent. This result not only signifies that the spectral matching between the LSPR peaks of Ag nanoprisms and the relatively low absorption response of photoactive layer in the microcavity architecture is an effective strategy to enhance light‐harvesting across its absorption region, but also demonstrates the promise of tailoring two different resonance bands in a synergistic manner at desired wavelength region to enhance the efficiency of PSCs.  相似文献   
134.
Although organic–inorganic hybrid perovskite solar cells (PVSCs) have achieved dramatic improvement in device efficiency, their long‐term stability remains a major concern prior to commercialization. To address this issue, extensive research efforts are dedicated to exploiting all‐inorganic PVSCs by using cesium (Cs)‐based perovskite materials, such as α‐CsPbI3. However, the black‐phase CsPbI3 (cubic α‐CsPbI3 and orthorhombic γ‐CsPbI3 phases) is not stable at room temperature, and it tends to convert to the nonperovskite δ‐CsPbI3 phase. Here, a simple yet effective approach is described to prepare stable black‐phase CsPbI3 by forming a heterostructure comprising 0D Cs4PbI6 and γ‐CsPbI3 through tuning the stoichiometry of the precursors between CsI and PbI. Such heterostructure is manifested to enable the realization of a stable all‐inorganic PVSC with a high power conversion efficiency of 16.39%. This work provides a new perspective for developing high‐performance and stable all‐inorganic PVSCs.  相似文献   
135.
136.
Ultrathin 2D molybdenum disulfide (MoS2), which is the flagship of 2D transition‐metal dichalcogenide nanomaterials, has drawn much attention in the last few years. 2D MoS2 has been banked as an alternative to platinum for highly active hydrogen evolution reaction because of its low cost, high surface‐to‐volume ratio, and abundant active sites. However, when MoS2 is used directly as a photocatalyst, contrary to public expectation, it still performs poorly due to lateral size, high recombination ratio of excitons, and low optical cross section. Besides, simply compositing MoS2 as a cocatalyst with other semiconductors cannot satisfy the practical application, which stimulates the pursual of a comprehensive insight into recent advances in synthesis, properties, and enhanced hydrogen production of MoS2. Therefore, in this Review, emphasis is given to synthetic methods, phase transitions, tunable optical properties, and interfacial engineering of 2D MoS2. Abundant ways of band edge tuning, structural modification, and phase transition are addressed, which can generate the neoteric photocatalytic systems. Finally, the main challenges and opportunities with respect to MoS2 being a cocatalyst and coherent light–matter interaction of MoS2 in photocatalytic systems are proposed.  相似文献   
137.
138.
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号