首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4829篇
  免费   228篇
  国内免费   38篇
电工技术   55篇
综合类   19篇
化学工业   1175篇
金属工艺   92篇
机械仪表   101篇
建筑科学   171篇
矿业工程   13篇
能源动力   161篇
轻工业   506篇
水利工程   57篇
石油天然气   17篇
无线电   420篇
一般工业技术   777篇
冶金工业   456篇
原子能技术   33篇
自动化技术   1042篇
  2024年   9篇
  2023年   65篇
  2022年   137篇
  2021年   190篇
  2020年   127篇
  2019年   104篇
  2018年   160篇
  2017年   171篇
  2016年   206篇
  2015年   162篇
  2014年   183篇
  2013年   322篇
  2012年   338篇
  2011年   302篇
  2010年   249篇
  2009年   247篇
  2008年   245篇
  2007年   226篇
  2006年   216篇
  2005年   165篇
  2004年   142篇
  2003年   110篇
  2002年   121篇
  2001年   63篇
  2000年   42篇
  1999年   66篇
  1998年   120篇
  1997年   83篇
  1996年   55篇
  1995年   45篇
  1994年   42篇
  1993年   37篇
  1992年   15篇
  1991年   23篇
  1990年   16篇
  1989年   26篇
  1988年   15篇
  1987年   20篇
  1986年   21篇
  1985年   12篇
  1984年   23篇
  1983年   19篇
  1982年   12篇
  1981年   19篇
  1980年   28篇
  1978年   8篇
  1977年   11篇
  1976年   15篇
  1975年   8篇
  1974年   9篇
排序方式: 共有5095条查询结果,搜索用时 15 毫秒
971.
Diffractive optical elements (DOEs) realized by spatial light modulators (SLMs) often have features that distinguish them from most conventional, static DOEs: strong coupling between phase and amplitude modulation, a modulation versus steering parameter characteristic that may not be precisely known (and may vary with, e.g., temperature), and deadspace effects and interpixel cross talk. For an optimal function of the DOE, e.g. as a multiple-beam splitter, the DOE design must account for these artifacts. We present an iterative design method in which the optimal setting of each SLM pixel is carefully chosen by considering the SLM artifacts and the design targets. For instance, the deadspace-interpixel effects are modeled by dividing the pixel to be optimized, and its nearest neighbors, into a number of subareas, each with its unique response and far-field contribution. Besides the customary intensity control, the design targets can also include phase control of the optical field in one or more of the beams in the beam splitter. We show how this can be used to cancel a strong unwanted zeroth-order beam, which results from using a slightly incorrect modulation characteristic for the SLM, by purposely sending a beam in the same direction but with the opposite phase. All the designs have been implemented on the 256 x 256 central pixels of a reflective liquid crystal on silicon SLM with a selected input polarization state and a direction of transmission axis of the output polarizer such that for the available different pixel settings a phase modulation of ~2pi rad could be obtained, accompanied by an intensity modulation depth as high as >95%.  相似文献   
972.
The emergence of spin electronics in data storage   总被引:2,自引:0,他引:2  
Electrons have a charge and a spin, but until recently these were considered separately. In classical electronics, charges are moved by electric fields to transmit information and are stored in a capacitor to save it. In magnetic recording, magnetic fields have been used to read or write the information stored on the magnetization, which 'measures' the local orientation of spins in ferromagnets. The picture started to change in 1988, when the discovery of giant magnetoresistance opened the way to efficient control of charge transport through magnetization. The recent expansion of hard-disk recording owes much to this development. We are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials. Ultimately, 'spin currents' could even replace charge currents for the transfer and treatment of information, allowing faster, low-energy operations: spin electronics is on its way.  相似文献   
973.
Blind image quality assessment through anisotropy   总被引:2,自引:0,他引:2  
We describe an innovative methodology for determining the quality of digital images. The method is based on measuring the variance of the expected entropy of a given image upon a set of predefined directions. Entropy can be calculated on a local basis by using a spatial/spatial-frequency distribution as an approximation for a probability density function. The generalized Rényi entropy and the normalized pseudo-Wigner distribution (PWD) have been selected for this purpose. As a consequence, a pixel-by-pixel entropy value can be calculated, and therefore entropy histograms can be generated as well. The variance of the expected entropy is measured as a function of the directionality, and it has been taken as an anisotropy indicator. For this purpose, directional selectivity can be attained by using an oriented 1-D PWD implementation. Our main purpose is to show how such an anisotropy measure can be used as a metric to assess both the fidelity and quality of images. Experimental results show that an index such as this presents some desirable features that resemble those from an ideal image quality function, constituting a suitable quality index for natural images. Namely, in-focus, noise-free natural images have shown a maximum of this metric in comparison with other degraded, blurred, or noisy versions. This result provides a way of identifying in-focus, noise-free images from other degraded versions, allowing an automatic and nonreference classification of images according to their relative quality. It is also shown that the new measure is well correlated with classical reference metrics such as the peak signal-to-noise ratio.  相似文献   
974.
Using the decomposition of an image field in two spatial components that can be controllably shifted in phase with respect to each other, a new quantitative-phase microscope has been developed. The new instrument, referred to as the fast Fourier phase microscope (f-FPM), provides a factor of 100 higher acquisition rate compared with our previously reported Fourier phase microscope. The resulting quantitative-phase images are characterized by diffraction limited transverse resolution and path-length stability better than 2 nm at acquisition rates of 10 frames/s or more. These features make the f-FPM particularly appealing for investigating the structure and dynamics of live cells over a broad range of time scales. In addition, we demonstrate the possibility of examining subcellular structures by digitally processing the amplitude and phase information provided by the instrument. Thus we developed software that can emulate phase contrast and differential interference contrast microscopy images by numerically processing FPM images. This approach adds the flexibility of digitally varying the phase shift between the two interfering beams. The images obtained appear as if they were recorded by variable phase contrast or differential interference contrast microscopes that deliver an enhanced view to the subcellular structure when compared with the typical commercial microscope.  相似文献   
975.
In a conjugated polymer, the mobility of charge carriers is not a well-defined coefficient of a particular material as it is in an inorganic crystalline semiconductor but depends on the time domain of detection. On a time-scale of typically 100 fs, the on-chain mobility is ultra-high and controlled by the electronic band width of the polymer chain. When a carrier hits a chain imperfection, subsequent mesoscopic on-chain motion is retarded and controlled by intrachain disorder to which the chain environment contributes. Macroscopic transport commences after a time when interchain carrier jumps become rate limiting. It is routinely probed by time-of-flight experiments and can be rationalized in terms of random walk within a rough energy landscape. Experimental signatures of the various modes of transport are discussed.  相似文献   
976.
We have performed scanning gate microscopy (SGM) on graphene field effect transistors (GFET) using a biased metallic nanowire coated with a dielectric layer as a contact mode tip and local top gate. Electrical transport through graphene at various back gate voltages is monitored as a function of tip voltage and tip position. Near the Dirac point, the response of graphene resistance to the tip voltage shows significant variation with tip position, and SGM imaging displays mesoscopic domains of electron-doped and hole-doped regions. Our measurements reveal substantial spatial fluctuation in the carrier density in graphene due to extrinsic local doping from sources such as metal contacts, graphene edges, structural defects and resist residues. Our scanning gate measurements also demonstrate graphene's excellent capability to sense the local electric field and charges.  相似文献   
977.
Oxygen-impurity boron-doped hydrogenated microcrystalline silicon (p-μc-Si:Ox:H) films have been deposited using catalytic chemical vapor deposition (Cat-CVD). Pure silane (SiH4), hydrogen (H2), oxygen (O2), and diluted diborane (B2H6) gases were used. The tungsten catalyst temperature (Tfil) was varied from 1900 to 2100 °C and films were deposited on glass substrates at temperatures of 100 to 300 °C. Different catalyst-to-substrate distances were employed and single- or double-coiled filaments were used. In addition to p-μc-Si:Ox:H deposition, we have also deposited conventional p-type microcrystalline silicon (p-μc-Si:H) in order to compare their electrical and optical properties to p-μc-Si:Ox:H.  相似文献   
978.
979.
Harmonic phase-dispersion microscopy (PDM) is a new imaging technique in which contrast is provided by differences in refractive index at two harmonically related wavelengths. We report a new configuration of the harmonic phase-dispersion microscope in a Mach-Zehnder geometry as an instrument for imaging biological samples. Several improvements on the earlier design are demonstrated, including a single-pass configuration and acousto-optic modulators for generating the heterodyne signals without mechanical arm scanning. We demonstrate quantitative phase-dispersion images of test structures and biological samples.  相似文献   
980.
Spatio-temporal encoding in transmit and receive modes is of major importance in the development of ultrasound imaging devices. Classically, the assumption of constant sound speed in the medium allows one to restrict the beamforming process to the application of a cylindrical time-delay law on the elements of a multiple-transducer array. Here is proposed an iterative time-reversal method capable of taking into account all the heterogeneities of the medium, concerning density, speed of sound, and absorption variations. It will be shown that this iterative focusing process converges toward a spatio-temporal inverse filter focusing, the first step of the process being a time-reversal focusing on the targeted point. This method can be seen as a calibration process and has been successfully applied to transskull focusing and intraplate echoes suppression. It is leading the way to promising applications such as high-resolution ultrasonic brain imaging and high-resolution focusing through complex reverberating media, in nondestructive testing and telecommunications. This work highlights the advantages of using spatio-temporal coding to focus through complex media. Such codes require the use of fully programmable, multichannel electronics to implement this technique in real time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号