首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   26篇
  国内免费   2篇
电工技术   4篇
综合类   5篇
化学工业   128篇
金属工艺   27篇
机械仪表   11篇
建筑科学   14篇
矿业工程   1篇
能源动力   46篇
轻工业   33篇
石油天然气   2篇
无线电   26篇
一般工业技术   74篇
冶金工业   6篇
原子能技术   1篇
自动化技术   53篇
  2024年   1篇
  2023年   8篇
  2022年   12篇
  2021年   25篇
  2020年   26篇
  2019年   33篇
  2018年   43篇
  2017年   33篇
  2016年   31篇
  2015年   24篇
  2014年   33篇
  2013年   50篇
  2012年   21篇
  2011年   21篇
  2010年   21篇
  2009年   17篇
  2008年   12篇
  2007年   12篇
  2006年   5篇
  2004年   3篇
排序方式: 共有431条查询结果,搜索用时 328 毫秒
21.
We review theories of polyelectrolyte (PE) coacervation, which is the spontaneous association of oppositely charged units of PEs and phase separation into a polymer-dense phase in aqueous solution. The simplest theories can be divided into “physics-based” and “chemistry-based” approaches. In the former, PEs are treated as charged, long-chain, molecules, defined by charge level, chain length, and chain flexibility, but otherwise lacking chemical identity, with electrostatic interactions driving coacervation. The “chemistry-based” approaches focus on the local interactions between the species for which chemical identity is critical, and describe coacervation as the result of competitive local binding interactions of monomers and salts. In this article, we show how these approaches complement each other by presenting recent approaches that take both physical and chemical effects into account. Finally, we suggest future directions toward producing theories that are made quantitatively predictive by accounting for both long range electrostatic and local chemically specific interactions.  相似文献   
22.
Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency.  相似文献   
23.
A successful design, previously adapted for treatment of complex wastewaters in a microbial fuel cell (MFC), was used to fabricate two MFCs, with a few changes for cost reduction and ease of construction. Performance and electrochemical characteristics of MFCs were evaluated in different environmental conditions (in complete darkness and presence of light), and different flow patterns of batch and continuous in four hydraulic retention times from 8 to 30 h. Changes in chemical oxygen demand, and nitrate and phosphate concentrations were evaluated. In contrast to the microbial fuel cell operated in darkness (D-MFC) with a stable open circuit voltage of 700 mV, presence of light led to growth of other species, and consecutively low and unsteady open circuit voltage. Although the performance of theMFC subjected to light (L-MFC)was quite lowand unsteady in dynamic state (internal resistance = 100 Ω, power density = 5.15 W·m-3), it reached power density of 9.2 W·m-3 which was close to performance of D-MFC (internal resistance = 50 Ω, power density = 10.3 W·m-3). Evaluated only for D-MFC, the coulombic efficiency observed in batch mode (30%) was quite higher than the maximum acquired in continuous mode (9.6%) even at the highest hydraulic retention time. In this study, changes in phosphate and different types of nitrogen existing in dairy wastewater were investigated for the first time. At hydraulic retention time of 8 h, the orthophosphate concentration in effluent was 84% higher compared to influent. Total nitrogen and total Kjeldahl nitrogen were reduced 70% and 99% respectively at hydraulic retention time of 30 h, while nitrate and nitrite concentrations increased. The microbial electrolysis cell (MEC), revamped from D-MFC, showed the maximum gas production of 0.2 m3 H2·m-3·d-1 at 700 mV applied voltage.  相似文献   
24.
Fiber–metal laminates (FMLs) are high-performance hybrid structures based on alternating stacked arrangements of fiber-reinforced plastic (FRP) plies and metal alloy layers. The response of FMLs subjected to low-velocity impact is studied in this paper. The aluminum (Al) sheets are placed instead of some of layers of FRP plies. The effect of the Al layers on contact force history, deflection, in-plane strains and stresses of the structure is studied. The first-order shear deformation theory as well as the Fourier series method is used to solve the governing equations of the composite plate analytically. The interaction between the impactor and the plate is modeled with the use of a two degrees-of-freedom system, consisting of springs-masses. The Choi's linearized Hertzian contact model is used in the impact analysis of the hybrid composite plate. The results indicated that some of the parameters like the layer sequence, mass and velocity of the impactor in a constant impact energy level, and the aspect ratio (a/b) of the plate are important factors affecting the dynamic response of the FMLs. Interaction among the mentioned geometrical parameters and material parameters like the aluminum 2024-T3 alloy layers is studied. The numerical results that are presented in this paper hitherto not reported in the published literature.  相似文献   
25.
The multidimensional multiple-choice knapsack problem (MMKP) is an extension of the 0–1 knapsack problem. The core concept has been used to design efficient algorithms for the knapsack problem but the core has not been developed for the MMKP so far. In this paper, we develop an approximate core for the MMKP and utilize it to solve the problem exactly.  相似文献   
26.
The production of 123I from 123Te by the l23Te(p, n)123I reaction at various target enrichments (99.9, 91, 85.4, and 70.1%) was simulated using ALICE and SRIM programs. The 123I production feasibility by the above reaction was evaluated. The calculations give more accurate results for proton beam energy of less than 30 MeV. The cross sections of all tellurium reactions with proton were calculated at 0–30 MeV proton beam energy with ALICE program, and the yield of 123I was calculated by analytical methods. Our prediction for 123I production via bombardment of 123Te (99.9%) with a proton beam energy of 5–15 MeV is about 7.2 mCi μA−1 h−1. Published in Russian in Radiokhimiya, 2008, Vol. 50, No. 5, pp. 460–463. The text was submitted by the authors in English.  相似文献   
27.
Bulletin of Engineering Geology and the Environment - The uniaxial compressive strength (UCS) and Young’s modulus (E) of rock are important parameters for evaluating the strength,...  相似文献   
28.
In this research, polyvinyl chloride (PVC) with excellent shape-memory effects is 4D printed via fused deposition modeling (FDM) technology. An experimental procedure for successful 3D printing of lab-made filament from PVC granules is introduced. Macro- and microstructural features of 3D printed PVC are investigated by means of wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) techniques. A promising shape-memory feature of PVC is hypothesized from the presence of small close imperfect thermodynamically stable crystallites as physical crosslinks, which are further reinforced by mesomorphs and possibly molecular entanglement. A detailed analysis of shape fixity and shape recovery performance of 3D printed PVC is carried out considering three programming scenarios of cold (Tg −45 °C), warm (Tg −15 °C), and hot (Tg +15 °C) and two load holding times of 0 s, and 600 s under three-point bending and compression modes. Extensive insightful discussions are presented, and in conclusion, shape-memory effects are promising,ranging from 83.24% to 100%. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state-of-the-art shape-memory materials library for 4D printing, and provide pertinent results that are instrumental in the 3D printing of shape-memory PVC-based structures.  相似文献   
29.
Nickel ferrite-based cermets and their relevant composites have been widely used as inert anodes for aluminum electrolysis due to the good combination of chemical resistance, thermal, and mechanical stability. In this study, various NiO/NiFe2O4 composites consisting 5, 10, and 15% NiO in conjunction with Cu/NiFe2O4 cermets containing 5, 10, and 15% Cu have been prepared by powder metallurgy method. The degradation resistance of developed inert composites has been evaluated under hot corrosion conditions by plunging the samples in the molten electrolyte at 1,000 °C for various holding times. The strength, toughness, hardness, relative density, microstructural observation, phase analysis, and electrical resistivity have been investigated in details by the 3-points bending test, Vickers hardness test, Archimedes method, scanning electron microscope, x-ray diffraction, and conventional direct current four-probe technique, respectively. The experimental results for NiO/NiFe2O4 composites show that a significant improvement of toughness and degradation resistance occurred in conjunction with a moderate decrease in strength by adding NiO content from 5 to 15%, while the relative density has been increased only up to 5%NiO content and then decreased. Moreover, increasing of Cu content from 5 to 15% in the cermet samples, all of the mentioned engineering properties such as strength, toughness and electrical conductivity have been improved considerably, but the degradation resistance has been decreased.  相似文献   
30.
Modeling and simulation of membrane‐based solvent extraction is conducted by computational fluid dynamics (CFD). The process is used for removal of priority organic pollutants from aqueous waste streams in nanoporous membranes. The pollutants include phenol, nitrobenzene, and acrylonitrile extracted by organic solvents. The mathematical model commonly applied to predict the performance of membrane‐based solvent extraction is the conventional resistance‐in‐series model. Here, a comprehensive mathematical model is developed to predict the transport of pollutants through nanoporous media. In order to predict the performance of the separation process, conservation equations for pollutants in the membrane module are derived and solved numerically. The model is then validated through comparing with experimental data reported in the literature. The simulation results were in good agreement with the experimental data for different values of feed flow rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号