首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   43篇
电工技术   3篇
化学工业   322篇
金属工艺   3篇
机械仪表   11篇
建筑科学   22篇
矿业工程   1篇
能源动力   15篇
轻工业   91篇
水利工程   6篇
石油天然气   1篇
无线电   19篇
一般工业技术   93篇
冶金工业   15篇
原子能技术   2篇
自动化技术   46篇
  2024年   1篇
  2023年   25篇
  2022年   120篇
  2021年   108篇
  2020年   34篇
  2019年   25篇
  2018年   32篇
  2017年   23篇
  2016年   28篇
  2015年   23篇
  2014年   24篇
  2013年   35篇
  2012年   24篇
  2011年   34篇
  2010年   18篇
  2009年   20篇
  2008年   16篇
  2007年   9篇
  2006年   12篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   6篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1984年   1篇
  1981年   2篇
排序方式: 共有650条查询结果,搜索用时 15 毫秒
601.
Adaptive web-based educational systems provide learners with personalized courses, where learning material is delivered to learners taking into account their personal learning needs, learning styles and learning progresses. In this paper we show the Lecomps5 system, a didactic framework, supporting the automated production and adaptation of personalized courses, implemented in the Lecomps5 system. In particular, this framework was designed in order to address the teacher’s satisfaction issue, arising in many systems that are quite demanding in terms of the teacher’s work and range of activities. Lecomps5 allows the teacher, through a simple and intuitive didactic tool, to define learning material, specify its characteristics pertaining to personalization and define, to some extent, the didactic strategies to be applied. In order to support both the management of learning material and the automated construction of personalized courses, the system embeds a planner, based on Linear Temporal Logic. The selection of learning material, its sequencing, and the delivery of courses, is performed according to both learners’ initial and run-time knowledge and learning styles. The teacher can focus more on her didactic tasks and preferences rather than on the available authoring tools, and spend less time to generate courses. Finally we show encouraging results from experimentation we conducted to test the system from a teacher’s point of view.  相似文献   
602.
Active elements for humidity sensors based upon MgAl2O4 thin films or sintered pellets were investigated. Thin films were deposited on Si/SiO2 substrates by radiofrequency (rf) sputtering. Sintered MgAl2O4 pellets were prepared by traditional ceramic processing. Scanning electron microscopy (SEM) analysis showed that the thin films were rather dense and homogeneous, made up of clustered particles of about 20–30 nm, while the pellets showed a wide pore-size distribution. X-ray photoelectron spectroscopy (XPS) demonstrated that the thin films have a stoichiometry close to that of MgAl2O4. Sintered MgAl2O4 is crystalline, while it is disordered in thin-film form. The presence of two different components of the Al 2 p peaks was correlated with the structural difference between pellets and thin films. The relationship between good film–substrate adhesive properties and the chemical composition at the interface was studied. The electrical properties of the sensing elements were studied at 40°C in environments at different relative humidity (RH) values between 2% and 95%, using ac impedance spectroscopy. MgAl2O4 thin films showed interesting characteristics in terms of their use in humidity-measurement devices. Resistance versus RH sensitivity values showed variations as high as 4 orders of magnitude in the RH range tested for thin films, and 5 orders of magnitude for pellets. The differences in the electrical behavior of MgAl2O4 pellets and thin films were correlated with their different microstructures.  相似文献   
603.
The self‐assembly of cellulose nanocrystals is a powerful method for the fabrication of biosourced photonic films with a chiral optical response. While various techniques have been exploited to tune the optical properties of such systems, the presence of external fields has yet to be reported to significantly modify their optical properties. In this work, by using small commercial magnets (≈ 0.5–1.2 T) the orientation of the cholesteric domains is enabled to tune in suspension as they assemble into films. A detailed analysis of these films shows an unprecedented control of their angular response. This simple and yet powerful technique unlocks new possibilities in designing the visual appearance of such iridescent films, ranging from metallic to pixelated or matt textures, paving the way for the development of truly sustainable photonic pigments in coatings, cosmetics, and security labeling.  相似文献   
604.
When using the bottom‐up approach with anisotropic building‐blocks, an important goal is to find simple methods to elaborate nanocomposite materials with a truly macroscopic anisotropy. Here, micrometer size colloidal mesoporous particles with a highly anisotropic rod‐like shape (aspect ratio ≈ 10) have been fabricated from silica (SiO2) and iron oxide (Fe2O3). When dispersed in a solvent, these particles can be easily oriented using a magnetic field (≈200 mT). A macroscopic orientation of the particles is achieved, with their long axis parallel to the field, due to the shape anisotropy of the magnetic component of the particles. The iron oxide nanocrystals are confined inside the porosity and they form columns in the nanochannels. Two different polymorphs of Fe2O3 iron oxide have been stabilized, the superparamagnetic γ‐phase and the rarest multiferroic ε‐phase. The phase transformation between these two polymorphs occurs around 900 °C. Because growth occurs under confinement, a preferred crystallographic orientation of iron oxide is obtained, and structural relationships between the two polymorphs are revealed. These findings open completely new possibilities for the design of macroscopically oriented mesoporous nanocomposites, using such strongly anisotropic Fe2O3/silica particles. Moreover, in the case of the ε‐phase, nanocomposites with original anisotropic magnetic properties are in view.  相似文献   
605.
This is the first report of an investigation on flexible perovskite solar cells for artificial light harvesting by using a white light-emitting diode (LED) lamp as a light source at 200 and 400 lx,values typically found in indoor environments.Flexible cells were developed using either low-temperature sol-gel or atomiclayer-deposited compact layers over conducting polyethylene terephthalate (PET)substrates,together with ultraviolet (UV)-irradiated nanoparticle TiO2 scaffolds,a CH3NH3PbI3-xClx perovskite semiconductor,and a spiro-MeOTAD hole transport layer.By guaranteeing high-quality carrier blocking (via the 10-40 nm-thick compact layer) and injection (via the nanocrystalline scaffold and perovskite layers) behavior,maximum power conversion efficiencies (PCE) and power densities of 10.8% and 7.2 μW.cm-2,respectively,at 200 lx,and 12.1% and 16.0 μW·cm-2,respectively,at 400 lx were achieved.These values are the state-of-the-art,comparable to and even exceeding those of flexible dye-sensitized solar cells under LED lighting,and significantly greater than those for flexible amorphous silicon,which are currently the main flexible photovoltaic technologies commercially considered for indoor applications.Furthermore,there are significant margins of improvement for reaching the best levels of efficiency for rigid glass-based counterparts,which we found was a high of PCE ~24% at 400 lx.With respect to rigid devices,flexibility brings the advantages of being low cost,lightweight,very thin,and conformal,which is especially important for seamless integration in indoor environments.  相似文献   
606.
Myocardial infarction (MI) is the leading cause of death worldwide. However, current therapies are unable to restore the function of the injured myocardium. Advanced approaches, such as stimulation of cardiomyocyte (CM) proliferation are promising, but suffer from poor pharmacokinetics and possible systemic adverse effects. Nanomedicines can be a solution to the above-mentioned drawbacks. However, targeting the cardiac tissue still represents a challenge. Herein, a MI-selective precision nanosystem is developed, that relies on the heart targeting properties of atrial natriuretic peptide (ANP) and lin-TT1 peptide-mediated hitchhiking on M2-like macrophages. The system based on pH-responsive putrescine-modified acetalated dextran (Putre-AcDEX) nanoparticles, shows biocompatibility with cultured cardiac cells, and ANP receptor-dependent interaction with CMs. Moreover, treatment with nanoparticles (NPs) loaded with two pleiotropic cellular self-renewal promoting compounds, CHIR99021 and SB203580, induces a 4-fold increase in bromodeoxyuridine (BrdU) incorporation in primary cardiomyocytes compared to control. In vivo studies confirm that M2-like macrophages targeting by lin-TT1 peptide enhances the heart targeting of ANP. In addition, NP administration does not alter the immunological profile of blood and spleen, showing the short-term safety of the developed system in vivo. Overall, the study results in the development of a peptide-guided precision nanosystem for delivery of therapeutic compounds to the infarcted heart.  相似文献   
607.
The effectiveness of radiation therapy for cancer depends on the patient remaining still during treatment. It is thus important to minimize the total treatment time (TTT). When such treatment is delivered using multileaf collimators in “step-and-shoot” mode, it consists of a sequence of collimator configurations, or patterns; for each, the patient is exposed to radiation for a specified time, or beam-on time. The TTT can thus be divided into the total beam-on time and the time spent reconfiguring the collimators. The latter can reasonably be approximated by the number of patterns, multiplied by a constant overhead time per pattern. Previous approaches to this problem have all been heuristic; in particular none of them actually use the pattern overhead time to ascertain the best trade-off between beam-on time and number of patterns. In this paper, we develop exact solution approaches, based on mixed integer programming (MIP) formulations, which minimize the TTT. We consider direct solution of MIP formulations, and then exploit the bicriteria structure of the objective to derive an algorithm that “steps up” through the number of patterns used, leading to substantial computational savings.  相似文献   
608.
We investigate the optimum control of a stochastic system, in the presence of both exogenous (control-independent) stochastic state variables and endogenous (control-dependent) state variables. Our solution approach relies on simulations and regressions with respect to the state variables, but also grafts the endogenous state variable into the simulation paths. That is, unlike most other simulation approaches found in the literature, no discretization of the endogenous variable is required. The approach is meant to handle several stochastic variables, offers a high level of flexibility in their modeling, and should be at its best in non time-homogenous cases, when the optimal policy structure changes with time. We provide numerical results for a dam-based hydropower application, where the exogenous variable is the stochastic spot price of power, and the endogenous variable is the water level in the reservoir.  相似文献   
609.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Gemcitabine (GEM) is used as the gold standard drug in PDAC treatment. However, due to its poor efficacy, it remains urgent to identify novel strategies to overcome resistance issues. In this context, an intense stroma reaction and the presence of cancer stem cells (CSCs) have been shown to influence PDAC aggressiveness, metastatic potential, and chemoresistance. Methods: We used three-dimensional (3D) organotypic cultures grown on an extracellular matrix composed of Matrigel or collagen I to test the effect of the new potential therapeutic prodrug 4-(N)-stearoyl-GEM, called C18GEM. We analyzed C18GEM cytotoxic activity, intracellular uptake, apoptosis, necrosis, and autophagy induction in both Panc1 cell line (P) and their derived CSCs. Results: PDAC CSCs show higher sensitivity to C18GEM treatment when cultured in both two-dimensional (2D) and 3D conditions, especially on collagen I, in comparison to GEM. The intracellular uptake mechanisms of C18GEM are mainly due to membrane nucleoside transporters’ expression and fatty acid translocase CD36 in Panc1 P cells and to clathrin-mediated endocytosis and CD36 in Panc1 CSCs. Furthermore, C18GEM induces an increase in cell death compared to GEM in both cell lines grown on 2D and 3D cultures. Finally, C18GEM stimulated protective autophagy in Panc1 P and CSCs cultured on 3D conditions. Conclusion: We propose C18GEM together with autophagy inhibitors as a valid alternative therapeutic approach in PDAC treatment.  相似文献   
610.
Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a long latency period and dismal prognosis. Recently, tazemetostat (EPZ-6438), an inhibitor of the histone methyltransferase EZH2, has entered clinical trials due to the antiproliferative effects reported on MPM cells. However, the direct and indirect effects of epigenetic reprogramming on the tumor microenvironment are hitherto unexplored. To investigate the impact of tumor-associated macrophages (TAMs) on MPM cell responsiveness to tazemetostat, we developed a three-dimensional MPM spheroid model that recapitulates in vitro, both monocytes’ recruitment in tumors and their functional differentiation toward a TAM-like phenotype (Mo-TAMs). Along with an increased expression of genes for monocyte chemoattractants, inhibitory immune checkpoints, immunosuppressive and M2-like molecules, Mo-TAMs promote tumor cell proliferation and spreading. Prolonged treatment of MPM spheroids with tazemetostat enhances both the recruitment of Mo-TAMs and the expression of their protumor phenotype. Therefore, Mo-TAMs profoundly suppress the antiproliferative effects due to EZH2 inhibition in MPM cells. Overall, our findings indicate that TAMs are a driving force for MPM growth, progression, and resistance to tazemetostat; therefore, strategies of TAM depletion might be evaluated to improve the therapeutic efficacy of pharmacological inhibition of EZH2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号