首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   45篇
电工技术   3篇
化学工业   322篇
金属工艺   3篇
机械仪表   11篇
建筑科学   22篇
矿业工程   1篇
能源动力   15篇
轻工业   91篇
水利工程   6篇
石油天然气   1篇
无线电   19篇
一般工业技术   93篇
冶金工业   15篇
原子能技术   2篇
自动化技术   46篇
  2024年   1篇
  2023年   25篇
  2022年   120篇
  2021年   108篇
  2020年   34篇
  2019年   25篇
  2018年   32篇
  2017年   23篇
  2016年   28篇
  2015年   23篇
  2014年   24篇
  2013年   35篇
  2012年   24篇
  2011年   34篇
  2010年   18篇
  2009年   20篇
  2008年   16篇
  2007年   9篇
  2006年   12篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   6篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1984年   1篇
  1981年   2篇
排序方式: 共有650条查询结果,搜索用时 15 毫秒
91.
The L12E, L12K, Q88E, and Q88K variants of spinach plastocyanin have been electrochemically investigated. The effects of insertion of net charges near the metal site on the thermodynamics of protonation and detachment from the copper(I) ion of the His87 ligand have been evaluated. The mutation-induced changes in transition enthalpy cannot be explained by electrostatic considerations. The existence of enthalpy/entropy (H/S) compensation within the protein series indicates that solvent-reorganization effects control the differences in transition thermodynamics. Once these compensating contributions are factorized out, the resulting modest differences in transition enthalpies turn out to be those that can be expected on purely electrostatic grounds. Therefore, this work shows that the acid transition in cupredoxins involves a reorganization of the H-bonding network within the hydration sphere of the molecule in the proximity of the metal center that dominates the observed transition thermodynamics and masks the differences that are due to protein-based effects.  相似文献   
92.
The proton uptake of 18 compositions in the perovskite family (Ba,Sr,La)(Fe,Co,Zn,Y)O3‐δ, perovskites, which are potential cathode materials for protonic ceramic fuel cells (PCFCs), is investigated by thermogravimetry. Hydration enthalpies and entropies are derived, and the doping trends are explored. The uptake is found to be largely determined by the basicity of the oxide ions. Partial substitution of Zn on the B‐site strongly enhances proton uptake, while Co substitution has the opposite effect. The proton concentration in Ba0.95La0.05Fe0.8Zn0.2O3‐δ is found to be 10% per formula unit at 250 °C, 5.5% at 400 °C, and 2.3% at 500 °C, which are the highest values reported so far for a mixed‐conducting perovskite exhibiting hole, proton, and oxygen vacancy transport. A comprehensive set of thermodynamic data for proton uptake in (Ba,Sr,La)(Fe,Co,Zn,Y)O3‐δ is determined. Defect interactions between protons and holes partially delocalized from the B‐site transition metal to the adjacent oxide ions decrease the proton uptake. From these results, guidelines for the optimization of PCFC cathode materials are derived.  相似文献   
93.
The first results on a simple new process for the direct fabrication of one-dimensional superlattices using common CVD chambers are presented. The experiments were carried out in a 200?mm industrial Centura reactor (Applied Materials). Low dimensionality and superlattices allow a significant increase in the figure of merit of thermoelectrics by controlling the transport of phonons and electrons. The monocrystalline nanowires produced according to this process are both one-dimensional and present heterostructures, with very thin layers (40?nm) of Si and SiGe. Concentrations up to 30?at.% Ge were obtained in the SiGe parts. Complementary techniques including transmission electronic microscopy (TEM), selected area electron diffraction (SAED), energy dispersive x-ray spectroscopy (EDS), scanning transmission electron microscopy (STEM) in bright field and high angle annular dark field (HAADF STEM), and energy-filtered transmission electron microscopy (EF-TEM) were used to characterize the nanoheterostructures.  相似文献   
94.
Nanoporous Si as an efficient thermoelectric material   总被引:1,自引:0,他引:1  
Lee JH  Galli GA  Grossman JC 《Nano letters》2008,8(11):3750-3754
Room-temperature thermoelectric properties of n-type crystalline Si with periodically arranged nanometer-sized pores are computed using a combination of classical molecular dynamics for lattice thermal conductivity and ab initio density functional theory for electrical conductivity, Seebeck coefficient, and electronic contribution to the thermal conductivity. The electrical conductivity is found to decrease by a factor of 2-4, depending on doping levels, compared to that of bulk due to confinement. The Seebeck coefficient S yields a 2-fold increase for carrier concentrations less than 2 x 10(19) cm(-3), above which S remains closer to the bulk value. Combining these results with our calculations of lattice thermal conductivity, we predict the figure of merit ZT to increase by 2 orders of magnitude over that of bulk. This enhancement is due to the combination of the nanometer size of pores which greatly reduces the thermal conductivity and the ordered arrangement of pores which allows for only a moderate reduction in the power factor. We find that while alignment of pores is necessary to preserve power factor values comparable to those of bulk Si, a symmetric arrangement is not required. These findings indicate that nanoporous semiconductors with aligned pores may be highly attractive materials for thermoelectric applications.  相似文献   
95.
Carbon nanotubes display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits and biosensors to field emitters and membranes. These applications use the non-covalent interactions between the nanotubes and chemical functionalities, often involving a few molecules at a time. Despite their wide use, we still lack a fundamental understanding and molecular-level control of these interactions. We have used chemical force microscopy to measure the strength of the interactions of single chemical functional groups with the sidewalls of vapour-grown individual single-walled carbon nanotubes. Surprisingly, the interaction strength does not follow conventional trends of increasing polarity or hydrophobicity, and instead reflects the complex electronic interactions between the nanotube and the functional group. Ab initio calculations confirm the observed trends and predict binding force distributions for a single molecular contact that match the experimental results. Our analysis also reveals the important role of molecular linkage dynamics in determining interaction strength at the single functional group level.  相似文献   
96.
97.
The use of assisted reproductive technologies (ART) still requires strategies through which to maximize individual fertility chances. In vitro folliculogenesis (ivF) may represent a valid option to convey the large source of immature oocytes in ART. Several efforts have been made to set up ivF cultural protocols in medium-sized mammals, starting with the identification of the most suitable gonadotropic stimulus. In this study, Equine Chorionic Gonadotropin (eCG) is proposed as an alternative to Follicle Stimulating Hormone (FSH) based on its long superovulation use, trans-species validation, long half-life, and low costs. The use of 3D ivF on single-ovine preantral (PA) follicles allowed us to compare the hormonal effects and to validate their influence under two different cultural conditions. The use of eCG helped to stimulate the in vitro growth of ovine PA follicles by maximizing its influence under FBS-free medium. Higher performance of follicular growth, antrum formation, steroidogenic activity and gap junction marker expression were recorded. In addition, eCG, promoted a positive effect on the germinal compartment, leading to a higher incidence of meiotic competent oocytes. These findings should help to widen the use of eCG to ivF as a valid and largely available hormonal support enabling a synchronized in vitro follicle and oocyte development.  相似文献   
98.
Osteosarcoma (OS) is a skeletal tumor affecting mainly children and adolescents. The presence of distance metastasis is frequent and it is localized preferentially to the lung, representing the main reason for death among patients. The therapeutic approaches are based on surgery and chemotherapeutics. However, the drug resistance and the side effects associated with the chemotherapy require the identification of new therapeutic approaches. The understanding of the complex biological scenario of the osteosarcoma will open the way for the identification of new targets for its treatment. Recently, a great interest of scientific community is for extracellular vesicles (EVs), that are released in the tumor microenvironment and are important regulators of tumor proliferation and the metastatic process. At the same time, circulating extracellular vesicles can be exploited as diagnostic and prognostic biomarkers, and they can be loaded with drugs as a new therapeutic approach for osteosarcoma patients. Thus, the characterization of OS-related EVs could represent a way to convert these vesicles from antagonists for human health into therapeutic and/or diagnostic agents.  相似文献   
99.
Thanks to their reduced size, great surface area, and capacity to interact with cells and tissues, nanomaterials present some attractive biological and chemical characteristics with potential uses in the field of biomedical applications. In this context, graphene and its chemical derivatives have been extensively used in many biomedical research areas from drug delivery to bioelectronics and tissue engineering. Graphene-based nanomaterials show excellent optical, mechanical, and biological properties. They can be used as a substrate in the field of tissue engineering due to their conductivity, allowing to study, and educate neural connections, and guide neural growth and differentiation; thus, graphene-based nanomaterials represent an emerging aspect in regenerative medicine. Moreover, there is now an urgent need to develop multifunctional and functionalized nanomaterials able to arrive at neuronal cells through the blood-brain barrier, to manage a specific drug delivery system. In this review, we will focus on the recent applications of graphene-based nanomaterials in vitro and in vivo, also combining graphene with other smart materials to achieve the best benefits in the fields of nervous tissue engineering and neural regenerative medicine. We will then highlight the potential use of these graphene-based materials to construct graphene 3D scaffolds able to stimulate neural growth and regeneration in vivo for clinical applications.  相似文献   
100.
ABSTRACT

Background: Toxoplasmosis is a zoonotic disease causing severe symptoms in pregnant women and immunocompromised individuals. On average, worldwide, around 30% of people are seropositive. The oral transmission route is of great significance and food, particularly meat, is an important transmission vehicle for T. gondii. However, the role of different food matrices is debated. Objectives: The aim of this review was to assess the risk of humans developing acute T. gondii infection via the foodborne route. Study eligibility criteria: Case-control studies including acute cases of T. gondii infection were included after literature searches, without time limits, in several databases. All studies estimating the risk of acquiring T. gondii infection after consumption of specific food categories were included. Results: Three risk factors proved to be significantly associated with acute T. gondii infection in humans: consumption of raw/undercooked meat, Odds Ratio (OR) 3.44 (1.29–9.16), consumption of raw/undercooked beef, OR 2.22 (1.57–3.12), and consumption of raw/undercooked sheep meat, OR 3.85 (1.85–8.00). Consumption of raw/undercooked pork, raw eggs, and unpasteurized milk proved to be non-significant risk factors. Limitations: Limitations in the present review and meta-analysis are due to the low number of case-control studies available for analysis and the lack of a search strategy targeting gray literature. Conclusion: Consumption of raw/undercooked beef and sheep meat are important risk factors for T. gondii infection. Their consumption should be avoided in order to prevent toxoplasmosis, particularly by those in at-risk categories, including pregnant women. The review protocol is registered in PROSPERO database (CRD42016043295).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号