首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2829篇
  免费   171篇
  国内免费   1篇
电工技术   60篇
综合类   1篇
化学工业   937篇
金属工艺   17篇
机械仪表   79篇
建筑科学   105篇
矿业工程   2篇
能源动力   83篇
轻工业   420篇
水利工程   27篇
石油天然气   5篇
无线电   229篇
一般工业技术   381篇
冶金工业   83篇
原子能技术   12篇
自动化技术   560篇
  2023年   34篇
  2022年   171篇
  2021年   185篇
  2020年   90篇
  2019年   84篇
  2018年   109篇
  2017年   85篇
  2016年   135篇
  2015年   90篇
  2014年   117篇
  2013年   200篇
  2012年   168篇
  2011年   217篇
  2010年   152篇
  2009年   179篇
  2008年   125篇
  2007年   130篇
  2006年   108篇
  2005年   87篇
  2004年   65篇
  2003年   57篇
  2002年   59篇
  2001年   35篇
  2000年   28篇
  1999年   23篇
  1998年   30篇
  1997年   23篇
  1996年   30篇
  1995年   16篇
  1994年   27篇
  1993年   8篇
  1992年   11篇
  1991年   5篇
  1990年   18篇
  1989年   10篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1984年   10篇
  1983年   8篇
  1982年   10篇
  1981年   6篇
  1980年   11篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1971年   2篇
  1965年   2篇
  1909年   2篇
排序方式: 共有3001条查询结果,搜索用时 15 毫秒
141.
Activation of P2X7 signaling, due to high glucose levels, leads to blood retinal barrier (BRB) breakdown, which is a hallmark of diabetic retinopathy (DR). Furthermore, several studies report that high glucose (HG) conditions and the related activation of the P2X7 receptor (P2X7R) lead to the over-expression of pro-inflammatory markers. In order to identify novel P2X7R antagonists, we carried out virtual screening on a focused compound dataset, including indole derivatives and natural compounds such as caffeic acid phenethyl ester derivatives, flavonoids, and diterpenoids. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring and structural fingerprint clustering of docking poses from virtual screening highlighted that the diterpenoid dihydrotanshinone (DHTS) clustered with the well-known P2X7R antagonist JNJ47965567. A human-based in vitro BRB model made of retinal pericytes, astrocytes, and endothelial cells was used to assess the potential protective effect of DHTS against HG and 2′(3′)-O-(4-Benzoylbenzoyl)adenosine-5′-triphosphate (BzATP), a P2X7R agonist, insult. We found that HG/BzATP exposure generated BRB breakdown by enhancing barrier permeability (trans-endothelial electrical resistance (TEER)) and reducing the levels of ZO-1 and VE-cadherin junction proteins as well as of the Cx-43 mRNA expression levels. Furthermore, HG levels and P2X7R agonist treatment led to increased expression of pro-inflammatory mediators (TLR-4, IL-1β, IL-6, TNF-α, and IL-8) and other molecular markers (P2X7R, VEGF-A, and ICAM-1), along with enhanced production of reactive oxygen species. Treatment with DHTS preserved the BRB integrity from HG/BzATP damage. The protective effects of DHTS were also compared to the validated P2X7R antagonist, JNJ47965567. In conclusion, we provided new findings pointing out the therapeutic potential of DHTS, which is an inhibitor of P2X7R, in terms of preventing and/or counteracting the BRB dysfunctions elicited by HG conditions.  相似文献   
142.
Mesenchymal stem cells (MSCs) are multipotent adult cells with self-renewing capacities. MSCs display specific properties, such as the ability to repair damaged tissues, resulting in optimal candidates for cell therapy against degenerative diseases. In addition to the reparative functions of MSCs, growing evidence shows that these cells have potent immunomodulatory and anti-inflammatory properties. Therefore, MSCs are potential tools for treating inflammation-related neurological diseases, including epilepsy. In this regard, over the last decades, epilepsy has no longer been considered a purely neuronal pathology, since inflammatory events underlying the genesis of epilepsy have been demonstrated. This review assessed current knowledge on the use of MSCs in the treatment of epilepsy. Mostly, attention will be focused on the anti-inflammatory and immunological skills of MSCs. Understanding the mechanisms by which MSCs might modulate the severity of the disease will contribute to the development of new potential alternatives for both prophylaxis and treatment against epilepsy.  相似文献   
143.
Gangliosides constitute a subgroup of glycosphingolipids characterized by the presence of sialic acid residues in their structure. As constituents of cellular membranes, in particular of raft microdomains, they exert multiple functions, some of them capital in cell homeostasis. Their presence in cells is tightly regulated by a balanced expression and function of the enzymes responsible for their biosynthesis, ganglioside synthases, and their degradation, glycosidases. The dysregulation of their abundance results in rare and common diseases. In this review, we make a point on the relevance of gangliosides and some of their metabolic precursors, such as ceramides, in the function of podocytes, the main cellular component of the glomerular filtration barrier, as well as their implications in podocytopathies. The results presented in this review suggest the pertinence of clinical lipidomic studies targeting these metabolites.  相似文献   
144.
145.
146.
Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF) criteria has been suggested in children. Docosahexaenoic acid (DHA) has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure) and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome.  相似文献   
147.
In this paper we report for the first time on the emissive behavior of two polyaniline (PANI) nanoparticle systems produced via oxidative chemical polymerization in the presence of either poly(vinyl alcohol) (PVA) or chitosan as polymeric stabilizers in water. The emission from PANI nanoparticles is irreversibly quenched by an increase of pH of the suspending medium from acid to neutral (chitosan-PANI) or alkaline (PVA-PANI). Conversely, PANI nanorods synthesized in the same conditions of the above, but in presence of poly(N-vinyl pyrrolidone), is not emissive at any pH. The role of the polymeric surfactant as a soft template is key in controlling the morphology and the properties of the obtained PANI dispersions. FTIR, UV-Vis absorption and photoluminescence excitation (PLE) spectra studies suggest that the emissive properties are related to the establishment of strong, non-covalent interactions between nanoscalar PANI particles and the polymeric surfactant at the pH of synthesis. Morphology examination of the three systems, by both dynamic light scattering (DLS) and Transmission Electron Microscopy (TEM), reveal that photoluminescence is associated to the presence of a genuinely 3D nanoscalar morphology, together with an ordered disposition of PANI chains into aligned crystal planes. Concomitant to the irreversible quenching of the emission signal with increasing pH, there is an evolution of the morphology leading to particle coalescence, coarsening and ultimately phase-separation, with consequent modification of PANI-polymeric surfactant interactions, PANI chains supra-molecular organization and optical properties of the PANI nanoparticles dispersion.  相似文献   
148.
Over the last decade there has been much interest in the applications of diglycolamide (DGA) ligands for the extraction of the trivalent lanthanide and actinide ions from PUREX high active raffinates or dissolved spent nuclear fuel. Of the DGAs, the N,N,N’,N’-tetraoctyldiglycolamide (TODGA) is the best known and most widely studied. A number of new actinide separation processes have been proposed based on extraction with TODGA. This review covers TODGA-based processes and extraction data, specifically focusing on how phase modifiers have been used to increase metal loading and thus enhance the operating process envelopes. Effects of third phase formation and the organic phase speciation are reviewed in this context. Relevant aspects of the extraction chemistry of important solvents (TODGA-modifier-diluent combinations) are described and their performances demonstrated by a consideration of the published flowsheet tests. It is seen that modifiers are successfully enabling the use of TODGA in actinide separation processes but to date the identification and testing of suitable modifiers has been rather empirical. There is a growing understanding of the fundamental chemistry occurring in the organic phase and how that affects extractant speciation and metal loading capacity but studies are still needed if TODGA-based flowsheets are to become an industrially deployable option for minor actinide (MA) recovery processes.  相似文献   
149.
We describe the self-assembly of soluble, chemically modified fullerene [6,6]-phenyl C61 butyric acid methyl ester (PCBM) into a new crystalline phase where the C60 moieties are arranged in parallel layers. Minimum C60 center-to-center distance is 10 Å within the layers, and up to 15 Å perpendicular to the layers. Highly anisotropic, mesoscopic hexagonal crystals of this material, with a lateral size of many microns and a thickness below 1 μm, are obtained from chloroform solution by solvent vapor annealing, and characterized by optical microscopy and X-ray diffraction. The crystalline structure is deduced combining experimental data with molecular modeling and ab initio calculations. The large difference in C60–C60 spacing indicates a high anisotropy in electrical and charge transport properties of this new phase.  相似文献   
150.
Lethal and teratogenic potentials of carbon nanoparticles (CNPs) in their amorphous form were investigated by the standardized Frog Embryo Teratogenesis Assay-Xenopus (FETAX), a 96-h in vitro whole-embryo toxicity test based on the amphibian Xenopus laevis. Embryos were acutely exposed to 1, 10, 100 and 500 mg/L CNP suspensions and evaluated for lethality, malformations and growth inhibition. Larvae were processed for histological and ultrastructural analyses to detect the main affected organs, to look for specific lesions at the subcellular level and to image and track CNPs into tissues. Only the highest CNP suspension resulted in being embryolethal for X. laevis larvae, while malformed larva percentages significantly differed from controls starting from 100 mg/L. The stomach and gut were the preferential CNP accumulation sites, on the contrary, the digestive epithelium remained intact. The analyses showed the presence of isolated nanoparticles and/or aggregates in different secondary target organs. CNPs were found in circulating erythrocytes. The research confirms the good tolerance of X. laevis towards pure elemental carbon in its nanoparticulate amorphous form, but highlights the possibility of CNP transfer toward all body areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号