首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2838篇
  免费   171篇
  国内免费   1篇
电工技术   60篇
综合类   1篇
化学工业   938篇
金属工艺   17篇
机械仪表   79篇
建筑科学   107篇
矿业工程   2篇
能源动力   83篇
轻工业   419篇
水利工程   28篇
石油天然气   5篇
无线电   233篇
一般工业技术   383篇
冶金工业   83篇
原子能技术   12篇
自动化技术   560篇
  2023年   34篇
  2022年   171篇
  2021年   185篇
  2020年   90篇
  2019年   84篇
  2018年   109篇
  2017年   85篇
  2016年   136篇
  2015年   90篇
  2014年   117篇
  2013年   203篇
  2012年   168篇
  2011年   217篇
  2010年   154篇
  2009年   180篇
  2008年   125篇
  2007年   130篇
  2006年   108篇
  2005年   87篇
  2004年   66篇
  2003年   57篇
  2002年   59篇
  2001年   35篇
  2000年   28篇
  1999年   23篇
  1998年   30篇
  1997年   23篇
  1996年   30篇
  1995年   16篇
  1994年   27篇
  1993年   8篇
  1992年   11篇
  1991年   5篇
  1990年   18篇
  1989年   10篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1984年   10篇
  1983年   8篇
  1982年   11篇
  1981年   6篇
  1980年   11篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1971年   2篇
  1965年   2篇
  1909年   2篇
排序方式: 共有3010条查询结果,搜索用时 15 毫秒
121.
In this study amorphous fluorinated coatings applied to anodized titanium surface have been investigated. A copolymer between tetrafluoroethylene and perfluoro-4-trifluoromethoxy-1,3-dioxole (AD60) and two perfluoropolyether containing ammonium phosphate (F10) or triethoxysilane (S10) functionalities have been tested. To estimate the color alteration of the anodized titanium surfaces due to the application of the coatings, spectrophotometric analyses have been made. Water and n-dodecane contact angles as well as apparent surface energy have been evaluated. Ellipsometry and atomic force microscopy data have been used to measure the thickness of the fluorinated coatings. A tailored mechanical preliminary test has also been explored to evaluate the adhesion of the coatings on the anodized titanium surface. The resistance to surface soiling with castor oil was also preliminarily investigated. The fluorinated coating tested on anodized titanium showed a low apparent surface energy and high chromatic aspect conservation, this is particularly evident for the titanium anodized coated with triethoxysilane functionalities fluoropolymers S10.  相似文献   
122.
Textile finishing includes all processes that help to maintain the value or increase the value of the textile material. It encompasses dyeing, printing, and all the finishing treatments to realize durable press, soil release, flame retardant, antistatic, antimicrobial, or water/oil repellency properties. When these properties are realized on dyed textile fabric, one effect could be ascribed to the color change induced by finishing operations. This research focuses on the assessment of color alterations occurring on the dyed cotton/polyester blended fabrics due to the nanoparticle‐sized dendrimer (DWR), dendrimer–fluorocarbon (DWOR), and fluorocarbon (FWOR) finishing onto their surfaces. The dependence of color on the surface state of treated textiles is calculated in the context of spectrophotometric measurements. Modification of the surface roughness by reflectance spectrum and the absorbance of finishes in visible range were investigated to determine color changes between the original (control fabric, dyed but not treated) and treated fabrics. As a result of color matching calculated by CIE‐Lab values, color change is related to the surface roughness associated with absorbance values of applied finishes. In addition, fabrics mechanical properties were evaluated to estimate if finishing agents application gives rise to other changes, besides color alterations. The fabrics mechanical properties have been found not significantly altered by the aforementioned finishing treatments. These results could be applied for industrial needs (quality control), or in the artistic field of conservation, or restoration (to follow the color of paintings). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
123.
BACKGROUND: This paper reports the results of an experimental campaign of autotrophic cultures of Stichococcus strains aiming at selecting the most promising strain for biofuel production. The strain selected—S. bacillaris 158/11—was cultivated in 1 L lab‐scale bubble column photobioreactors under fed‐batch and semi‐continuous conditions. A Bold basal medium supplemented with NaNO3 as nitrogen source was adopted. Tests were carried out at 23 °C, 140 µE m?2 s?1, and air flow rate ranging between 0.4 and 4 vvm. Cultures were characterized in terms of pH, concentration of total nitrogen, total organic carbon, total inorganic carbon, biomass, lipid fraction and methyl‐ester distribution of transesterified lipids. RESULTS: S. bacillaris 158/11 proved to be the best strain to produce biodiesel. Methyl‐ester distribution was characterized by a large fraction of methyl palmitate, methyl linolenate, methyl linoleate, and methyl oleate along with phytol. The process photosynthetic efficiency—fraction of available light stored as chemical energy ‐ was about 1.5%. Specific biomass productivity was ~60 mgDM L?1 day?1 under the semi‐continuous conditions tested. Total lipid productivity was 14 mg L?1 day?1 at a dilution rate of 0.050 L day?1. CONCLUSION: S. bacillaris 158/11 is a potential strain for massive microalgae cultures for biofuel production. Higher biomass/total‐lipid productivity could be obtained in sunlight. Copyright © 2011 Society of Chemical Industry  相似文献   
124.
The fracture behavior of Al2O3/SiC nanocomposites has been studied as a function of the SiC volume fraction and compared to that of the pure Al2O3 matrix. A pronounced strengthening effect was only observed for materials with low SiC content (i.e., ≤10 vol%) although no evidence of concurrent toughening was found. Assessment of near-tip crack opening displacement (COD) could not experimentally substantiate significant occurrence of an elastic crack-bridging mechanism, in contrast with a recently proposed literature model. Quantitative fractography analysis indicated that transgranular crack propagation in Al2O3/SiC nanocomposites depends on the location of the SiC dispersoids within the matrix texture; the higher the fraction of transgranularly located dispersoids, the more transgranular the fracture mode. Experimental evidence of remarkably high residual stresses arising from thermal dilatation mismatch (upon cooling) between Al2O3 and SiC phases were obtained by fluorescence and Raman spectroscopy. A strengthening mechanism is invoked which merely arises from residual stress through strengthening of Al2O3 grain boundaries.  相似文献   
125.
The grain-boundary structure of a model SiAlON polycrystal with nominal composition Si5AlON7 was characterized by transmission electron microscopy (TEM) both in an equilibrium (as-processed) state at room temperature and after quenching from elevated temperature. In addition, low-frequency (1–13 Hz) internal friction data were recorded as a function of temperature, showing a pronounced grain-boundary sliding peak positioned at 1030°C. High-resolution transmission electron microscopy (HRTEM) of the equilibrated low-temperature microstructure revealed residual glass only at multigrain junctions, but no amorphous intergranular films were observed. The detection of clean interfaces in the as-processed sample contradicts the internal friction data, which instead suggests the presence of a low-viscosity grain boundary phase, sliding at elevated temperatures. Therefore, a thin section of the as-sintered material was heated to 1380°C and rapidly quenched. HRTEM analysis of this sample showed, apart from residual glass pockets, wetted grain boundaries, which is in line with the internal friction experiment. This wetting-dewetting phenomenon observed in z = 1 SiAlON is expected to have a strong impact not only on high-temperature engineering ceramics but also on geological, temperature-activated processes such as volcanic eruptions.  相似文献   
126.
Effects of N2 sintering atmosphere and the starting SiC powder on the microstructural evolution of liquid-phase-sintered (LPS) SiC were studied. It was found that, for the β-SiC starting powder case, there was complete suppression of the β→α phase transformation, which otherwise goes to completion in Ar atmosphere. It was also found that the microstructures were equiaxed and that the coarsening was severely retarded, which was in contrast with the Ar-atmosphere case. Chemical analyses of the specimens sintered in N2 atmosphere revealed the presence of significant amounts of nitrogen, which was believed to reside mostly in the intergranular phase. It was argued that the presence of nitrogen in the LPS SiC helped stabilize the β-SiC phase, thereby preventing the β→α phase transformation and the attendant formation of elongated grains. To investigate the coarsening retardation, internal friction measurements were performed on LPS SiC specimens sintered in either Ar or N2 atmosphere. For specimens sintered in N2 atmosphere, a remarkable shift of the grain-boundary sliding relaxation peak toward higher temperatures and very high activation energy values were observed, possibly due to the incorporation of nitrogen into the structure of the intergranular liquid phase. The highly refractory and viscous nature of the intergranular phase was deemed responsible for retarding the solution–reprecipitation coarsening in these materials. Parallel experiments with specimens sintered using α-SiC starting powders further reinforce these arguments. Thus, processing of LPS SiC in N2 atmosphere open the possibility of tailoring their microstructures for room-temperature mechanical properties and for making high-temperature materials that are highly resistant to coarsening and creep.  相似文献   
127.
Infections by flaviviruses, such as Dengue, West Nile, Yellow Fever and Zika viruses, represent a growing risk for global health. There are vaccines only for few flaviviruses while no effective treatments are available. Flaviviruses share epidemiological, structural, and ecologic features and often different viruses can co-infect the same host. Therefore, the identification of broad-spectrum inhibitors is highly desirable either for known flaviviruses or for viruses that likely will emerge in the future. Strategies targeting both virus and host factors have been pursued to identify broad-spectrum antiflaviviral agents. In this review, we describe the most promising and best characterized targets and their relative broad-spectrum inhibitors, identified by drug repurposing/libraries screenings and by focused medicinal chemistry campaigns. Finally, we discuss about future strategies to identify new broad-spectrum antiflavivirus agents.  相似文献   
128.
Activation of P2X7 signaling, due to high glucose levels, leads to blood retinal barrier (BRB) breakdown, which is a hallmark of diabetic retinopathy (DR). Furthermore, several studies report that high glucose (HG) conditions and the related activation of the P2X7 receptor (P2X7R) lead to the over-expression of pro-inflammatory markers. In order to identify novel P2X7R antagonists, we carried out virtual screening on a focused compound dataset, including indole derivatives and natural compounds such as caffeic acid phenethyl ester derivatives, flavonoids, and diterpenoids. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring and structural fingerprint clustering of docking poses from virtual screening highlighted that the diterpenoid dihydrotanshinone (DHTS) clustered with the well-known P2X7R antagonist JNJ47965567. A human-based in vitro BRB model made of retinal pericytes, astrocytes, and endothelial cells was used to assess the potential protective effect of DHTS against HG and 2′(3′)-O-(4-Benzoylbenzoyl)adenosine-5′-triphosphate (BzATP), a P2X7R agonist, insult. We found that HG/BzATP exposure generated BRB breakdown by enhancing barrier permeability (trans-endothelial electrical resistance (TEER)) and reducing the levels of ZO-1 and VE-cadherin junction proteins as well as of the Cx-43 mRNA expression levels. Furthermore, HG levels and P2X7R agonist treatment led to increased expression of pro-inflammatory mediators (TLR-4, IL-1β, IL-6, TNF-α, and IL-8) and other molecular markers (P2X7R, VEGF-A, and ICAM-1), along with enhanced production of reactive oxygen species. Treatment with DHTS preserved the BRB integrity from HG/BzATP damage. The protective effects of DHTS were also compared to the validated P2X7R antagonist, JNJ47965567. In conclusion, we provided new findings pointing out the therapeutic potential of DHTS, which is an inhibitor of P2X7R, in terms of preventing and/or counteracting the BRB dysfunctions elicited by HG conditions.  相似文献   
129.
Mesenchymal stem cells (MSCs) are multipotent adult cells with self-renewing capacities. MSCs display specific properties, such as the ability to repair damaged tissues, resulting in optimal candidates for cell therapy against degenerative diseases. In addition to the reparative functions of MSCs, growing evidence shows that these cells have potent immunomodulatory and anti-inflammatory properties. Therefore, MSCs are potential tools for treating inflammation-related neurological diseases, including epilepsy. In this regard, over the last decades, epilepsy has no longer been considered a purely neuronal pathology, since inflammatory events underlying the genesis of epilepsy have been demonstrated. This review assessed current knowledge on the use of MSCs in the treatment of epilepsy. Mostly, attention will be focused on the anti-inflammatory and immunological skills of MSCs. Understanding the mechanisms by which MSCs might modulate the severity of the disease will contribute to the development of new potential alternatives for both prophylaxis and treatment against epilepsy.  相似文献   
130.
Gangliosides constitute a subgroup of glycosphingolipids characterized by the presence of sialic acid residues in their structure. As constituents of cellular membranes, in particular of raft microdomains, they exert multiple functions, some of them capital in cell homeostasis. Their presence in cells is tightly regulated by a balanced expression and function of the enzymes responsible for their biosynthesis, ganglioside synthases, and their degradation, glycosidases. The dysregulation of their abundance results in rare and common diseases. In this review, we make a point on the relevance of gangliosides and some of their metabolic precursors, such as ceramides, in the function of podocytes, the main cellular component of the glomerular filtration barrier, as well as their implications in podocytopathies. The results presented in this review suggest the pertinence of clinical lipidomic studies targeting these metabolites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号