首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   30篇
电工技术   4篇
化学工业   132篇
金属工艺   21篇
机械仪表   4篇
建筑科学   6篇
矿业工程   1篇
能源动力   11篇
轻工业   134篇
水利工程   4篇
石油天然气   1篇
无线电   5篇
一般工业技术   33篇
冶金工业   23篇
原子能技术   2篇
自动化技术   32篇
  2023年   1篇
  2022年   19篇
  2021年   33篇
  2020年   15篇
  2019年   17篇
  2018年   11篇
  2017年   16篇
  2016年   17篇
  2015年   17篇
  2014年   23篇
  2013年   19篇
  2012年   28篇
  2011年   18篇
  2010年   32篇
  2009年   17篇
  2008年   18篇
  2007年   19篇
  2006年   17篇
  2005年   19篇
  2004年   4篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1980年   1篇
  1978年   1篇
排序方式: 共有413条查询结果,搜索用时 6 毫秒
11.
Polypyrrole hollow nanoparticles were prepared by atmospheric pressure plasma polymerization. The structure of the nanoparticles was studied using Fourier transform infrared and X‐ray photoelectron spectroscopies, thermogravimetric analysis, scanning and transmission electron microscopies and atomic force microscopy. In contrast to low‐pressure plasma polymerization of pyrrole, which can produce films and solid nanoparticles, we obtained two types of hollow nanoparticles: a fraction with single spherical core and another with a core composed of small bubbles. Thermal characterization allowed us to determine that the nanoparticles are composed of highly crosslinked polymer. A mechanism that explains the formation of both types of hollow nanoparticles as well as solid nanoparticles is proposed. Chemical characterization shows that, in addition to the expected chemical structures due to pyrrole polymerization, the high energy of the plasma at atmospheric pressure produces intense dehydrogenation and oxidation processes. The fluorescence spectrum of the nanoparticles, however, shows a peak at 482 nm indicating that some degree of π‐conjugation is present in the material. © 2014 Society of Chemical Industry  相似文献   
12.
Historically, cell-signaling pathways have been studied as the compilation of isolated elements into a unique cascade that transmits extracellular stimuli to the tumor cell nucleus. Today, growing evidence supports the fact that intracellular drivers of tumor progression do not flow in a single linear pathway, but disseminate into multiple intracellular pathways. An improved understanding of the complexity of cancer depends on the elucidation of the underlying regulatory networks at the cellular and intercellular levels and in their temporal dimension. The high complexity of the intracellular cascades causes the complete inhibition of the growth of one tumor cell to be very unlikely, except in cases in which the so-called “oncogene addiction” is known to be a clear trigger for tumor catastrophe, such as in the case of gastrointestinal stromal tumors or chronic myeloid leukemia. In other words, the separation and isolation of the driver from the passengers is required to improve accuracy in cancer treatment. This review will summarize the signaling pathway crossroads that govern renal cell carcinoma proliferation and the emerging understanding of how these pathways facilitate tumor escape. We outline the available evidence supporting the putative links between different signaling pathways and how they may influence tumor proliferation, differentiation, apoptosis, angiogenesis, metabolism and invasiveness. The conclusion is that tumor cells may generate their own crossroads/crosstalk among signaling pathways, thereby reducing their dependence on stimulation of their physiologic pathways.  相似文献   
13.
BACKGROUND: Efficient conversion of glucose/xylose mixtures from lignocellulose is necessary for commercially viable ethanol production. Oxygen and carbon sources are of paramount importance for ethanol yield. The aim of this work was to evaluate different glucose/xylose mixtures for ethanol production using S. cerevisiae ITV‐01 (wild type yeast) and P. stipitis NRRL Y‐7124 and the effect of supplying oxygen in separate and co‐culture processes. RESULTS: The complete conversion of a glucose/xylose mixture (75/30 g L?1) was obtained using P. stipitis NRRL Y‐7124 under aerobic conditions (0.6 vvm), the highest yield production being Yp/s = 0.46 g g?1, volumetric ethanol productivity Qpmax = 0.24 g L?1 h?1 and maximum ethanol concentration Pmax = 34.5 g L?1. In the co‐culture process and under aerobic conditions, incomplete conversion of glucose/xylose mixture was observed (20.4% residual xylose), with a maximum ethanol production of 30.3 g L?1, ethanol yield of 0.4 g g?1 and Qpmax = 1.26 g L?1 h?1. CONCLUSIONS: The oxygen present in the glucose/xylose mixture promotes complete sugar consumption by P. stipitis NRRL Y‐7124 resulting in ethanol production. However, in co‐culture with S. cerevisiae ITV‐01 under aerobic conditions, incomplete fermentation occurs that could be caused by oxygen limitation and ethanol inhibition by P. stipitis NRRL Y‐7124; nevertheless the volumetric ethanol productivity increases fivefold compared with separate culture. Copyright © 2011 Society of Chemical Industry  相似文献   
14.
The fine tuning of a sensor designed to locate interfaces using a two‐dimensional gas–solid fluidized bed (FB) as reference is described. The sensor works through computer vision and consists of a charge coupled device camera that is placed alongside the bed and, as the human eye would do, first establishes a straight segment of the bed's top surface to define the phase boundary and then through pattern recognition continuously scans the interface in search of a similar pattern. The field of view is 582 × 752 pixels2. The experimentally measured Pixel size is 216 × 208 μm2. The device allows for experimentally obtaining the position of the probe with a resolution of ± 0.01 pixels at 25 Hz. We also describe its use to measure the height of the FB and observe a linear relationship with fluidization velocity. © 2012 American Institute of Chemical Engineers AIChE J, 2012  相似文献   
15.
Polymer Bulletin - Preparation of associating multiblock copolymer electrolytes mediated by radical addition–fragmentation chain transfer (RAFT) technique has been evaluated and reported in...  相似文献   
16.
The oregano spice includes various plant species. The most common are the genus Origanum, native of Europe, and the Lippia, native of Mexico. Among the species of Origanum. their most important components are the limonene, gamma-cariofilene, rho-cymenene, canfor, linalol, alpha-pinene, carvacrol and thymol. In the genus Lippia, the same compounds can be found. The oregano composition depends on the specie, climate, altitude, time of recollection and the stage of growth. Some of the properties of this plant's extracts are being currently studied due to the growing interest for substituting synthetic additives commonly found in foods. Oregano has a good antioxidant capacity and also presents antimicrobial activity against pathogenic microorganisms like Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, among others. These are all characteristics of interest for the food industry because they may enhance the safety and stability of foods. There are also some reports regarding the antimutagenic and anticarcinogenic effect of oregano; representing an alternative for the potential treatment and/or prevention of certain chronic ailments, like cancer.  相似文献   
17.
18.
Hydrogel silver nanocomposites have been used in applications with excellent antibacterial performance. Acrylic acid (AA)/itaconic acid (IA) hydrogels silver nanocomposites were prepared and applied as a coating on a textile substrate. Hydrogel matrices were synthesized first by the polymerization of an AA/IA aqueous (80/20 v/v) solution and mixed with 2‐2‐azobis(2‐methylpropionamide) diclorohydrate and N,N′‐methylene bisacrylamide until the hydrogel was formed. Silver nanoparticles were generated throughout the hydrogel networks with an in situ method via the incorporation of the silver ions and subsequent reduction with sodium borohydride. Cotton (C) and cotton/polyester (CP) textile fibers were then coated with these hydrogel silver nanocomposites. The influence of these nanocomposite hydrogels on the properties of the textile fiber were investigated by infrared spectroscopy (attenuated total reflectance), scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and antibacterial tests against Pseudomona aeruginosa and Staphylococcus aureus. The better conditions, in which no serious aggregation of the silver nanoparticles occurred, were determined. It was proven that the textiles coated with hydrogels containing nanosilver had an excellent antibacterial abilities. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2713–2721, 2013  相似文献   
19.
E.P. Pedraza 《Polymer》2005,46(24):11174-11185
Functionalized core-shell latexes were prepared by copolymerization of butyl acrylate and methyl methacrylate with 2-hydroxyethyl methacrylate (HEMA) or methacrylic acid (MAA), which were added during the first or second stages of polymerization, respectively. The HEMA and MAA concentrations were increased while the equivalent ratio of functional groups remained constant. Colloidal stability, particle size, particle size distribution, film properties and morphology were studied as functions of functional monomer content. The upper limit functionality content was limited by the stability of the system during synthesis. A bimodal particle size distribution was observed for high concentrations of functional monomers. Increase in carboxyl and hydroxyl functionalities improved tensile strength and modulus for un-crosslinked films, and generally higher tensile strength, tensile modulus and storage modulus at high temperature were obtained after the functional latexes were crosslinked with a cycloaliphatic diepoxide.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号