首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1058篇
  免费   100篇
  国内免费   1篇
电工技术   8篇
化学工业   258篇
金属工艺   8篇
机械仪表   19篇
建筑科学   54篇
矿业工程   1篇
能源动力   35篇
轻工业   199篇
水利工程   14篇
石油天然气   3篇
无线电   77篇
一般工业技术   258篇
冶金工业   44篇
原子能技术   5篇
自动化技术   176篇
  2024年   6篇
  2023年   14篇
  2022年   28篇
  2021年   34篇
  2020年   37篇
  2019年   39篇
  2018年   51篇
  2017年   35篇
  2016年   44篇
  2015年   42篇
  2014年   60篇
  2013年   93篇
  2012年   78篇
  2011年   91篇
  2010年   58篇
  2009年   76篇
  2008年   64篇
  2007年   46篇
  2006年   45篇
  2005年   28篇
  2004年   23篇
  2003年   22篇
  2002年   25篇
  2001年   10篇
  2000年   13篇
  1999年   11篇
  1998年   17篇
  1997年   9篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1956年   1篇
排序方式: 共有1159条查询结果,搜索用时 15 毫秒
21.
The present work proposes an autonomous tracking control system and a control structure to combine autonomous and teleoperation commands in a bicycle-type mobile robot. This compounded operation renders great flexibility to the control system of the mobile robot. For autonomous operation, a simple tracking controller that includes compensation of the robot dynamics is developed. This tracking control system is proved to be stable in the sense that it asymptotically reaches the tracking objective. Teleoperation with visual access to the robot’s workspace is integrated via a joystick with the autonomous operation of the robot. Simulations and experimental results on a prototype robot show the feasibility and performance of the proposed control system.  相似文献   
22.
Many high charge carrier mobility (μ) active layers within organic field‐effect transistor (OFET) configurations exhibit non‐linear current–voltage characteristics that may drift with time under applied bias and, when applying conventional equations for ideal FETs, may give inconsistent μ values. This study demonstrates that the introduction of electron deficient fullerene acceptors into thin films comprised of the high‐mobility semiconducting polymer PCDTPT suppresses an undesirable “double‐slope” in the current–voltage characteristics, improves operational stability, and changes ambipolar transport to unipolar transport. Examination of other high μ polymers shows general applicability. This study also shows that one can further reduce instability by tuning the relative electron affinity of the polymer and fullerene by creating blends containing different fullerene derivatives and semiconductor polymers. One can obtain hole μ values up to 5.6 cm2 V–1 s–1 that are remarkably stable over multiple bias‐sweeping cycles. The results provide a simple, solution‐processable route to dictate transport properties and improve semiconductor durability in systems that display similar non‐idealities.  相似文献   
23.
The combination of cell microenvironment control and real‐time monitoring of cell signaling events can provide key biological information. Through precise multipatterning of gold nanoparticles (GNPs) around cells, sensing and actuating elements can be introduced in the cells' microenviroment, providing a powerful substrate for cell studies. In this work, a combination of techniques are implemented to engineer complex substrates for cell studies. Alternating GNPs and bioactive areas are created with micrometer separation by means of a combination of vacumm soft‐lithography of GNPs and protein microcontract printing. Instead of conventional microfluidics that need syringe pumps to flow liquid in the microchannels, degas driven flow is used to fill dead‐end channels with GNP solutions, rendering the fabrication process straightforward and accessible. This new combined technique is called Printing and Vacuum lithography (PnV lithography). By using different GNPs with various organic coating ligands, different macroscale patterns are obtained, such as wires, supercrystals, and uniformly spread nanoparticle layers that can find different applications depending on the need of the user. The application of the system is tested to pattern a range of mammalian cell lines and obtain readouts on cell viability, cell morphology, and the presence of cell adhesive proteins.  相似文献   
24.
25.
Tissue regeneration is often impaired in patients with metabolic disorders such as diabetes mellitus and obesity, exhibiting reduced wound repair and limited regeneration capacity. We and others have demonstrated that wound healing under normal metabolic conditions is potentiated by the secretome of human endothelial cell-differentiated mesenchymal stem cells (hMSC-EC). However, it is unknown whether this effect is sustained under hyperglycemic conditions. In this study, the wound healing effect of secretomes from undifferentiated human mesenchymal stem cells (hMSC) and hMSC-EC in a type-2 diabetes mouse model was analyzed. hMSC were isolated from human Wharton’s jelly and differentiated into hMSC-EC. hMSC and hMSC-EC secretomes were analyzed and their wound healing capacity in C57Bl/6J mice fed with control (CD) or high fat diet (HFD) was evaluated. Our results showed that hMSC-EC secretome enhanced endothelial cell proliferation and wound healing in vivo when compared with hMSC secretome. Five soluble proteins (angiopoietin-1, angiopoietin-2, Factor de crecimiento fibroblástico, Matrix metallopeptidase 9, and Vascular Endothelial Growth Factor) were enriched in hMSC-EC secretome in comparison to hMSC secretome. Thus, the five recombinant proteins were mixed, and their pro-healing property was evaluated in vitro and in vivo. Functional analysis demonstrated that a cocktail of these proteins enhanced the wound healing process similar to hMSC-EC secretome in HFD mice. Overall, our results show that hMSC-EC secretome or a combination of specific proteins enriched in the hMSC-EC secretome enhanced wound healing process under hyperglycemic conditions.  相似文献   
26.
The expression ratio between the analysed gene and an internal control gene is the most widely used normalization method for quantitative RT-PCR (qRT-PCR) expression analysis. The ideal reference gene for a specific experiment is the one whose expression is not affected by the different experimental conditions tested. In this study, we validate the applicability of five commonly used reference genes during different stages of mouse lung development. The stability of expression of five different reference genes (Tuba1a, Actb Gapdh, Rn18S and Hist4h4) was calculated within five experimental groups using the statistical algorithm of geNorm software. Overall, Tuba1a showed the least variability in expression among the different stages of lung development, while Hist4h4 and Rn18S showed the maximum variability in their expression. Expression analysis of two lung specific markers, surfactant protein C (SftpC) and Clara cell-specific 10 kDA protein (Scgb1a1), normalized to each of the five reference genes tested here, confirmed our results and showed that incorrect reference gene choice can lead to artefacts. Moreover, a combination of two internal controls for normalization of expression analysis during lung development will increase the accuracy and reliability of results.  相似文献   
27.
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease worldwide, but a reliable non-invasive method to quantify liver steatosis in primary healthcare is not available. Circulating microRNAs have been proposed as biomarkers of severe/advanced NAFLD (steatohepatitis and fibrosis). However, the use of circulating miRNAs to quantitatively assess the % of liver fat in suspected NAFLD patients has not been investigated. We performed global miRNA sequencing in two sets of samples: human livers from organ donors (n = 20), and human sera from biopsy-proven NAFLD patients (n = 23), both with a wide range of steatosis quantified in their liver biopsies. Partial least squares (PLS) regression combined with recursive feature elimination (RFE) was used to select miRNAs associated with steatosis. Moreover, regression models with only 2 or 3 miRNAs, with high biological relevance, were built. Comprehensive microRNA sequencing of liver and serum samples resulted in two sets of abundantly expressed miRNAs (418 in liver and 351 in serum). Pearson correlation analyses indicated that 18% of miRNAs in liver and 14.5% in serum were significantly associated with the amount of liver fat. PLS-RFE models demonstrated that 50 was the number of miRNAs providing the lowest error in both liver and serum models predicting steatosis. Comparison of the two miRNA subsets showed 19 coincident miRNAs that were ranked according to biological significance (guide/passenger strand, relative abundance in liver and serum, number of predicted lipid metabolism target genes, correlation significance, etc.). Among them, miR-10a-5p, miR-98-5p, miR-19a-3p, miR-30e-5p, miR-32-5p and miR-145-5p showed the highest biological relevance. PLS regression models with serum levels of 2–3 of these miRNAs predicted the % of liver fat with errors <5%.  相似文献   
28.
Six synthetic heparin-like oligosaccharides have been used to investigate the effect of the oligosaccharide sulfation pattern on the stimulation of acidic fibroblast growth factor (FGF-1) induced mitogenesis signaling and the biological significance of FGF-1 trans dimerization in the FGF-1 activation process. It has been found that some molecules with a sulfation pattern that does not contain the internal trisaccharide motif, which has been proposed for high affinity for FGF-1, stimulate FGF-1 more efficiently than those with the structure of the regular region of heparin. In contrast to regular region oligosaccharides, in which the sulfate groups are distributed on both sides of their helical three-dimensional structures, the molecules containing this particular sulfation pattern display the sulfate groups only on one side of the helix. These results and the fact that these oligosaccharides do not promote FGF-1 dimerization according to sedimentation-equilibrium analysis, confirm the importance of negative-charge distribution in the activation process and strongly suggest that FGF dimerization is not a general and absolute requirement for biological activity.  相似文献   
29.
Microcellular foaming of commodity amorphous polymers, poly(methyl methacrylate) (PMMA), and poly(styrene) (PS) was studied in supercritical CO2 via a batch one-step process in the presence of block copolymers able to change their foaming behaviour and therefore the porous structures. Triblock (styrene-co-butadiene-co-methylmethacrylate SBM, methylmethacrylate-co-butylacrylate-co-methylmethacrylate MAM) terpolymers were blended to PS or PMMA by extrusion. They showed advantages compared to classical PS-PMMA polymer blends in terms of cell size control and reduction of cell size. Foaming is carried out on bulk injection molded samples which were saturated under high pressures of CO2 (300 bars) at different temperatures (25° C to 80 °C) and different depressurization rates (pressure drop rates from 150 bar/min to 12 bar/min). Very distinct cellular structures and densities were controlled by varying either the copolymer type or the foaming conditions (T,P). Cell sizes ranged from 0.2 μm to 200 μm, and densities from 0.30 g/cm3 to 1 g/cm3 in the polymers considered. Particularly, when triblock copolymers were able to self organize (nanostructuring) in a polymer matrix, they became phase separated at a nanometer level, presenting nanostructured polymers matrixes. To conclude the study, a possible nanostructuring mechanism is suggested based on the interplay between rubbery and highly CO2-philic blocks/rigid and less CO2-philic blocks. It is demonstrated that block copolymer additives are a good pathway towards micro and ultra microcellular supercritical CO2 foaming of amorphous polymers.  相似文献   
30.
This work aims to evaluate the feasibility of using imidazolium ionic liquids (ILs) in the design of multiphase bioreactors for the removal of volatile organic compounds (VOCs). The IL affinity for three model VOCs (dimethyl sulfide, dimethyl disulfide and toluene) was evaluated by means of the dimensionless partition coefficient (K). It was observed that ILs showed K values comparable to typical liquid solvents used in multiphase bioreactors for VOC biodegradation (K values ranged from 0.009 to 0.011, 0.0012 to 0.0013 and 0.00061 to 0.00096 for dimethyl sulfide, dimethyl disulfide and toluene, respectively). Toxicity tests showed that both ILs at concentrations of 5% and 10% (v/v) inhibited the glucose uptake of an activated sludge during approximately 24 h. After such lag period, the microorganisms were able to recover its metabolic activity. However, VOC biodegradation experiments showed that ILs at 5% (v/v) were toxic for the activated sludge and a toxic synergistic effect of the IL–VOC combination likely occurred. After acclimation to the target VOCs, only the toluene biodegradation capacity was significantly increased in the presence of ILs. These toxic effects represent a key drawback for the potential of IL-based multiphase systems devoted to VOC biodegradation. Therefore, this study suggests that microbial acclimation only to the VOCs is not enough to get an efficient biodegradation in multiphase systems including ILs as non-aqueous phases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号