首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2316篇
  免费   120篇
  国内免费   9篇
电工技术   33篇
综合类   9篇
化学工业   804篇
金属工艺   45篇
机械仪表   72篇
建筑科学   59篇
矿业工程   1篇
能源动力   154篇
轻工业   355篇
水利工程   19篇
石油天然气   9篇
无线电   186篇
一般工业技术   359篇
冶金工业   45篇
原子能技术   4篇
自动化技术   291篇
  2024年   7篇
  2023年   49篇
  2022年   138篇
  2021年   184篇
  2020年   113篇
  2019年   117篇
  2018年   144篇
  2017年   117篇
  2016年   142篇
  2015年   110篇
  2014年   143篇
  2013年   239篇
  2012年   198篇
  2011年   184篇
  2010年   114篇
  2009年   86篇
  2008年   58篇
  2007年   49篇
  2006年   38篇
  2005年   31篇
  2004年   22篇
  2003年   20篇
  2002年   15篇
  2001年   18篇
  2000年   13篇
  1999年   5篇
  1998年   14篇
  1997年   3篇
  1996年   10篇
  1995年   10篇
  1994年   15篇
  1993年   7篇
  1992年   1篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1978年   1篇
  1977年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1947年   1篇
排序方式: 共有2445条查询结果,搜索用时 15 毫秒
91.
The main purpose of tissue engineering is the preparation of fibrous scaffolds with similar structural and biochemical cues to the extracellular matrix in order to provide a substrate to support the cells. Controlled release of bioactive agents such as growth factors from the fibrous scaffolds improves cell behavior on the scaffolds and accelerates tissue regeneration. In this study, nanofibrous scaffolds were fabricated from biocompatible and biodegradable poly(lactic‐co‐glycolic acid) through the electrospinning technique. Nanofibers with a core–sheath structure encapsulating bovine serum albumin (BSA) as a model protein for hydrophilic bioactive agents were prepared through emulsion electrospinning. The morphology of the nanofibers was evaluated by field‐emission scanning electron microscopy and the core–sheath structure of the emulsion electrospun nanofibers was observed by transmission electron microscopy. The results of the mechanical properties and X‐ray diffraction are reported. The scaffolds demonstrated a sustained release profile of BSA. Biocompatibility of the scaffolds was evaluated using the MTT (3(4,5‐ dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay for NIH‐3T3 fibroblast cells. The results indicated desirable biocompatibility of the scaffolds with the capability of encapsulation and controlled release of the protein, which can serve as tissue engineering scaffolds. © 2013 Society of Chemical Industry  相似文献   
92.
Nickel zinc ferrite (Ni-ZnFe2O4)-filled natural rubber (NR) composite was prepared at various loading of ferrite. The tensile properties included in this study were tensile strength, tensile modulus and elongation at break. The tensile strength and elongation at break of the composites increased up to 40 parts per hundred rubber (phr) of ferrite and then decreased at higher loading whereas the tensile modulus was increased gradually with increasing of ferrite loading. Scanning electron microscopy (SEM) was used to determine the wettability of filler in rubber matrix. From the observation, the increase of filler loading reduced the wettability of the filler. Thermal stability of the composites was conducted by using a thermogravimetry analyser (TGA). The incorporation of ferrite in NR composites enhanced the thermal stability of NR composites. The swelling test results indicate that the swelling percentage of the composites decreased by increasing of ferrite loading. The initial permeability, μi and quality factor, Q of magnetic properties of NR composites achieved maximum value at 60 phr of ferrite loading for frequency range between 5000–40,000 kHz. The maximum impedance, Z max of the NR composites was at the highest value at 80 phr ferrite loading for frequency range between 200–800 MHz.  相似文献   
93.
Vertically aligned silicon nanowires have been synthesized by the chemical etching of silicon wafers. The influence of a hydrogenated amorphous silicon (a-Si:H) layer (shell) on top of a silicon nanowire (SiNW) solar cell has been investigated. The optical properties of a-Si:H/SiNWs and SiNWs are examined in terms of optical reflection and absorption properties. In the presence of the a-Si:H shell, 5.2% reflection ratio in the spectral range (250 to 1,000 nm) is achieved with a superior absorption property with an average over 87% of the incident light. In addition, the characteristics of the solar cell have been significantly improved, which exhibits higher open-circuit voltage, short-circuit current, and efficiency by more than 15%, 12%, and 37%, respectively, compared with planar SiNW solar cells. Based on the current–voltage measurements and morphology results, we show that the a-Si:H shell can passivate the defects generated by wet etching processes.  相似文献   
94.
Y3Fe5O12 (YIG) prepared by conventional solid-state method can rarely be of high purity. However, this study suggests that high purity YIG can be produced via conventional solid-state methods, through stoichiometry modification. This is achieved by adding various amounts of excess Fe2O3 to control the YIG stoichiometric ratios. In this work, ferrite and yttria were calcined at 1100 °C (for 8 h) and sintered at 1420 °C (6 h). In most samples, the formation of YIG, with YFeO3 (YIP) and/or Fe2O3 as associated phases were detected. Uniform microstructures of YIG are also observed. YIP phase in YIG is found to be inversely related to the addition of excess Fe2O3, up to 8 wt%. At above 8 wt% Fe2O3 addition, YIP disappears, leaving unreacted excess Fe2O3 as a new associated phase. From the investigation, it is safe to conclude that the purity of YIG can be increased with the addition of excess Fe2O3.  相似文献   
95.
The experimental conditions for the synthesis of ZnO nanoparticles to produce minimal size were optimized using the D-optimal design. The influence of process parameters involves molar ratio of the starting materials, pH and the calcination temperature on the particle size were evaluated using the polynomial regression. The optimum conditions revealed by the model for obtaining a minimum particle size of ZnO were predicted to have a molar ratio of 1.76, pH of 1.50 and calcination at 402.2 °C. The obtainable particle size upon applying the model is 22.9 nm in compare to experimental result of 18 ± 2 nm was obtained.  相似文献   
96.
A noble approach based on the encapsulation of corrosion inhibitors has been presented, which are capable of improving the active corrosion protection without negatively influencing the barrier properties of the coating layers. Polymeric nanocapsules loaded with six types of amine corrosion inhibitors were synthesized by multi-stage emulsion polymerization. Depending on the basicity and water solubility of amines, different amounts of releasable corrosion inhibitors were encapsulated into the polymer capsules. Encapsulated organic amines were generally well released under alkaline conditions, and linear amines were more easily released from inside capsules than branched ones. The nanocapsules were incorporated into the coating resin and were coated on cold-rolled steel sheets to investigate corrosion protection efficiencies. The corrosion inhibitive efficiencies of the nanocapsule-containing coating layers were evaluated by electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). In this study, it was revealed that the intrinsic properties of the amines as well as their encapsulation/release behaviors determined the barrier property and self-healing protection capability of the coating layer.  相似文献   
97.
98.
Molecularly imprinted polymers (MIPs) were prepared by bulk polymerization in acetonitrile using 2,4-dinitrophenol, acrylamide, ethylene glycol dimethacrylate, and benzoyl peroxide, as the template, functional monomer, cross-linker, and initiator, respectively. The MIP membrane was prepared by hybridization of MIP particles with cellulose acetate (CA) and polystyrene (PS) after being ground and sieved. The prepared MIP membrane was characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters studied for the removal of 2,4-dinitrophenol included the effect of pH, sorption kinetics, and the selectivity of the MIP membrane. Maximum sorption of 2,4-nitrophenol by the fabricated CA membrane with MIP (CA-MIP) and the PS membrane with MIP (PS-MIP) was observed at pH 7.0 and pH 5.0, respectively. The sorption of 2,4-dinitrophenol by CA-MIP and PS-MIP followed a pseudo–second-order kinetic model. For a selectivity study, 2,4-dichlorophenol, 3-chlorophenol, and phenol were selected as potential interferences. The sorption capability of CA-MIP and PS-MIP towards 2,4-dinitrophenol was observed to be higher than that of 2,4-dichlorophenol, 3-chlorophenol, or phenol.  相似文献   
99.
Tree nuts are rich in macro and micronutrients, phytochemicals, tocopherols and phenolic compounds. The development of nut spreads would potentially increase the food uses of nuts and introduce consumers with a healthier, non-animal breakfast snack food. Nut spreads are spreadable products made from nuts that are ground into paste. Roasting and milling (particle size reduction) are two important stages for the production of nut spreads that affected the textural, rheological characteristic and overall quality of the nut spread. Textural, color, and flavor properties of nut spreads play a major role in consumer appeal, buying decisions and eventual consumption. Stability of nut spreads is influenced by its particle size. Proper combination of ingredients (nut paste, sweetener, vegetable oil and protein sources) is also required to ensure a stable nut spread product is produced. Most of the nut spreads behaved like a non-Newtonian pseudo-plastic fluid under yield stress which help the producers how to start pumping and stirring of the nut spreads. Similar to other high oil content products, nut spreads are susceptible to autoxidation. Their oxidation can be controlled by application of antioxidants, using processing techniques that minimize tocopherol and other natural antioxidant losses.  相似文献   
100.
The concept of skin‐core (SC) morphology was used to make sandwich hybrid composites in which the skin and core were composed of different fibers in the same matrix. The sandwich blends comprising glass skin with carbon core and vice versa were compared with those of the hybrid composite, while the respective carbon (CF) and glass fiber (GF) composites served as points of reference. The composites were compounded and fabricated into injection molded tensile specimens and 3‐mm thick plaques. The effect of ambient temperature and moisture was studied. The fracture mechanical characterization of the various materials was done by using notched compact tension (CT) specimens. Tensile properties were also used to characterize the composites. Morphogical studies based on scanning electron microscopy and light microscopy were used to elucidate fracture characteristics. Deterioration of properties was noticed under hot and humid conditions. Synergism in flexural properties was observed in the CF/GF/PA hybrid composite. The mechanical properties of the CF/GF/PA hybrid are closer to those of CF/PA, suggesting a cost advantage by substituting half of the carbon fibers with glass fibers. Dynamic mechanical analysis results revealed that synergism in Tg is attained by blending or sandwiching glass and carbon fibers. Morphological studies reaffirmed the skin‐core morphology of the composites. POLYM. COMPOS., 26:52–59, 2005. © 2004 Society of Plastics Engineers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号