首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1017篇
  免费   0篇
化学工业   6篇
机械仪表   7篇
轻工业   7篇
水利工程   1篇
无线电   3篇
一般工业技术   5篇
冶金工业   986篇
自动化技术   2篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   6篇
  2002年   1篇
  2000年   1篇
  1999年   29篇
  1998年   349篇
  1997年   185篇
  1996年   109篇
  1995年   52篇
  1994年   34篇
  1993年   70篇
  1992年   6篇
  1991年   10篇
  1990年   5篇
  1989年   9篇
  1988年   8篇
  1987年   6篇
  1986年   8篇
  1985年   7篇
  1982年   8篇
  1981年   4篇
  1980年   7篇
  1979年   1篇
  1978年   1篇
  1977年   12篇
  1976年   68篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   3篇
  1968年   1篇
  1966年   1篇
排序方式: 共有1017条查询结果,搜索用时 15 毫秒
41.
This review summarizes mutagenesis studies, emphasizing the use of bacteriophage T4 mutator and antimutator strains. Early genetic studies on T4 identified mutator and antimutator variants of DNA polymerase that, in turn, stimulated the development of model systems for the study of DNA polymerase fidelity in vitro. Later enzymatic studies using purified T4 mutator and antimutator polymerases were essential in elucidating mechanisms of base selection and exonuclease proofreading. In both cases, the base analogue 2-aminopurine (2AP) proved tremendously useful-first as a mutagen in vivo and then as a probe of DNA polymerase fidelity in vitro. Investigations into mechanisms of DNA polymerase fidelity inspired theoretical models that, in turn, called for kinetic and thermodynamic analyses. Thus, the field of DNA synthesis fidelity has grown from many directions: genetics, enzymology, kinetics, physical biochemistry, and thermodynamics, and today the interplay continues. The relative contributions of hydrogen bonding and base stacking to the accuracy of DNA synthesis are beginning to be deciphered. For the future, the main challenges lie in understanding the origins of mutational hot and cold spots.  相似文献   
42.
To evaluate the relative ability of those striatal neuron types containing calbindin or parvalbumin to withstand a Ca(2+)-mediated excitotoxic insult, we injected the NMDA receptor-specific excitotoxin quinolinic acid (QA) into the striatum in mature adult rats and 2 months later examined the relative survival of striatal interneurons rich in parvalbumin and striatal projection neurons rich in calbindin. To provide standardization to the survival of striatal neuron types thought to be poor in Ca2+ buffering proteins, the survival was compared to that of somatostatin-neuropeptide Y (SS/NPY)-containing interneurons and enkephalinergic projection neurons, which are devoid of or relatively poorer in such proteins. The various neuron types were identified by immunohistochemical labeling for these type-specific markers and their relative survival was compared at each of a series of increasing distances from the injection center. In brief, we found that parvalbuminergic, calbindinergic, and enkephalinergic neurons all showed a generally comparable gradient of neuronal loss, except just outside the lesion center, where calbindin-rich neurons showed significantly enhanced survival. In contrast, striatal SS/NPY interneurons were more vulnerable to QA than any of these three other types. These observed patterns of survival following intrastriatal QA injection suggest that calbindin and parvalbumin content does not by itself determine the vulnerability of striatal neurons to QA-mediated excitotoxicity in mature adult rats. For example, parvalbuminergic striatal interneurons were not impervious to QA, while cholinergic striatal interneurons are highly resistant and SS/NPY+ striatal interneurons are highly vulnerable. Both cholinergic and SS/NPY+ interneurons are devoid of any known calcium buffering protein. Similarly, calbindin does not prevent striatal projection neuron vulnerability to QA excitotoxicity. Nonetheless, our data do suggest that calbindin may offer striatal neurons some protection against moderate excitotoxic insults, and this may explain the reportedly slightly greater vulnerability of striatal neurons that are poor in calbindin to ischemia and Huntington's disease.  相似文献   
43.
44.
45.
Cytokine receptors have been shown in cell culture systems to use phosphotyrosine residues as docking sites for certain signal transduction intermediates. Studies using various cellular backgrounds have yielded conflicting information about the importance of such residues. The present studies were undertaken to determine whether or not tyrosine residues within the erythropoietin receptor (EPOR) are essential for biologic activity during hematopoiesis in vivo. A variant of the EPOR was constructed that contains both a substitution (R129C) causing constitutive receptor activation as well as replacement of all eight cytoplasmic tyrosines by phenylalanines (cEPORYF). A comparison between animals exposed to recombinant retroviruses expressing cEPOR and cEPORYF showed that efficient red blood cell (RBC) development in vivo is dependent on the pressence of tyrosine residues in the cytoplasmic domain of the EPOR. In addition, an inefficient EPOR tyrosine independent pathway supporting RBC development was detected. Tyrosine add-back mutants showed that multiple individual tyrosines have the capacity to restore full erythropoietic potential to the EPOR as determined in whole animals. The analysis of primary erythroid progenitors transduced with the various cEPOR tyrosine mutants and tyrosine add-backs showed that only tyrosine 343 (Y1) and tyrosine 479 (Y8) were capable of supporting immature burst-forming unit-erythroid progenitor development. Thus, this receptor is characterized by striking functional redundancy of tyrosines in a biologically relevant context. However, selective tyrosine residues may be uniquely important for early signals supporting erythroid development.  相似文献   
46.
47.
48.
Flaujeac trait is the functional deficiency of a plasma protein of the intrinsic coagulation, kinin-forming, and plasma fibrinolytic pathways. The Flaujeac factor in man has been isolated and tentatively identified as a kininogen of high molecular weight (HMW). Highly purified bovine HMW-kininogen, but not bovine low molecular weight kininogen, repaired Flaujeac factor deficiency. The two subspecies of this molecule, HMW-kininogen a and HMW-kininogen b, also corrected Flaujeac factor deficiency. When bovine HMW-kininogen was incubated with bovine plasma kallikrein, kinin-free HMW-kininogen, bradykinin, and a glycopeptide fragment (peptide 1-2; 12,584 daltons) were rapidly released. None of these fragmentation products corrected Flaujeac factor deficiency alone or in mixtures. The function of HMW-kininogen appeared to depend upon the structural integrity of the native molecule. When injected in concentrations of 2 pmol-8 nmol/0.1 ml, peptide 1-2 caused increased vascular permeability in rabbits, rats, or guinea pigs. The enhanced permeability was maximal within 1-2 min and terminated in 5-10 min, differing from that of bradykinin or histamine. Injected together in equimolar amounts, peptide 1-2 and bradykinin produced a synergistic permeability response which was immediate in onset as well as prolonged in duration. Peptide 1-2 is a rapidly acting, highly basic glyco-peptide which mediates increased vascular permeability in a complementary and synergistic manner with bradykinin.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号