The Journal of Supercomputing - In the literature, most previous studies on English implicit inter-sentence relation recognition only focused on semantic interactions, which could not exploit the... 相似文献
Neural Computing and Applications - In this paper, the state estimation problem is investigated for a class of discrete-time complex-valued neural networks (CVNNs) with mixed time delays. We... 相似文献
Applied Intelligence - In recent years, low-rank tensor completion has been widely used in color image recovery. Tensor Train (TT), as a balanced tensor rank minimization method, has achieved good... 相似文献
The homogeneous incorporation of heteroatoms into two-dimensional C nanostructures, which leads to an increased chemical reactivity and electrical conductivity as well as enhanced synergistic catalysis as a conductive matrix to disperse and encapsulate active nanocatalysts, is highly attractive and quite challenging. In this study, by using the natural and cheap hydrotropic amino acid proline—which has remarkably high solubility in water and a desirable N content of ~12.2 wt.%—as a C precursor pyrolyzed in the presence of a cubic KCl template, we developed a facile protocol for the large-scale production of N-doped C nanosheets with a hierarchically porous structure in a homogeneous dispersion. With concomitantly encapsulated and evenly spread Fe2O3 nanoparticles surrounded by two protective ultrathin layers of inner Fe3C and outer onion-like C, the resulting N-doped graphitic C nanosheet hybrids (Fe2O3@Fe3C-NGCNs) exhibited a very high Li-storage capacity and excellent rate capability with a reliable and prolonged cycle life. A reversible capacity as high as 857 mAh•g–1 at a current density of 100 mA•g–1 was observed even after 100 cycles. The capacity retention at a current density 10 times higher—1,000 mA•g–1—reached 680 mAh•g–1, which is 79% of that at 100 mA•g–1, indicating that the hybrids are promising as anodes for advanced Li-ion batteries. The results highlight the importance of the heteroatomic dopant modification of the NGCNs host with tailored electronic and crystalline structures for competitive Li-storage features.
Tensile properties and failure mechanism of a newly developed three-dimensional (3D) woven composite material named 3D nonorthogonal woven composite are investigated in this paper. The microstructure of the composite is studied and the tensile properties are obtained by quasi-static tensile tests. The failure mechanism of specimen is discussed based on observation of the fracture surfaces via electron microscope. It is found that the specimens always split along the oblique yarns and produce typical v-shaped fracture surfaces. The representative volume cell (RVC) is established based on the microstructure. A finite element analysis is conducted with periodical boundary conditions. The finite element simulation results agree well with the experimental data. By analyzing deformation and stress distribution under different loading conditions, it is demonstrated that finite element model based on RVC is valid in predicting tensile properties of 3D nonorthogonal woven composites. Stress distribution shows that the oblique yarns and warp yarns oriented along the x direction carry primary load under x tension and that warp yarns bear primary load under y tension. 相似文献