首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145898篇
  免费   22445篇
  国内免费   6301篇
电工技术   8312篇
技术理论   9篇
综合类   9029篇
化学工业   32769篇
金属工艺   6511篇
机械仪表   7432篇
建筑科学   10168篇
矿业工程   2930篇
能源动力   3695篇
轻工业   18871篇
水利工程   2783篇
石油天然气   4880篇
武器工业   1174篇
无线电   18676篇
一般工业技术   21745篇
冶金工业   4884篇
原子能技术   1263篇
自动化技术   19513篇
  2024年   533篇
  2023年   1732篇
  2022年   3471篇
  2021年   4705篇
  2020年   4788篇
  2019年   5660篇
  2018年   6060篇
  2017年   6741篇
  2016年   6899篇
  2015年   8464篇
  2014年   9463篇
  2013年   11721篇
  2012年   10744篇
  2011年   11067篇
  2010年   10468篇
  2009年   10047篇
  2008年   9735篇
  2007年   8922篇
  2006年   8018篇
  2005年   6625篇
  2004年   5075篇
  2003年   4308篇
  2002年   4147篇
  2001年   3525篇
  2000年   2989篇
  1999年   2107篇
  1998年   1318篇
  1997年   1097篇
  1996年   867篇
  1995年   756篇
  1994年   556篇
  1993年   422篇
  1992年   347篇
  1991年   297篇
  1990年   204篇
  1989年   150篇
  1988年   123篇
  1987年   77篇
  1986年   90篇
  1985年   44篇
  1984年   47篇
  1983年   24篇
  1982年   24篇
  1981年   36篇
  1980年   45篇
  1979年   17篇
  1977年   11篇
  1976年   19篇
  1975年   11篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
Controlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL‐100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF–PEG interaction is deeply investigated using high‐resolution soft X‐ray spectroscopy. Finally, a cell penetration study using the radio‐labeled antitumor agent gemcitabine monophosphate (3H‐GMP)‐loaded MIL‐100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.  相似文献   
972.
Using a dynamic fabrication process, hybrid, photoactivated microswimmers made from two different semiconductors, titanium dioxide (TiO2) and cuprous oxide (Cu2O) are developed, where each material occupies a distinct portion of the multiconstituent particles. Structured light‐activated microswimmers made from only TiO2 or Cu2O are observed to be driven in hydrogen peroxide and water most vigorously under UV or blue light, respectively, whereas hybrid structures made from both of these materials exhibit wavelength‐dependent modes of motion due to the disparate responses of each photocatalyst. It is also found that the hybrid particles are activated in water alone, a behavior which is not observed in those made from a single semiconductor, and thus, the system may open up a new class of fuel‐free photoactive colloids that take advantage of semiconductor heterojunctions. The TiO2/Cu2O hybrid microswimmer presented here is but an example of a broader method for inducing different modes of motion in a single light‐activated particle, which is not limited to the specific geometries and materials presented in this study.  相似文献   
973.
In this research, bulk graphitic carbon nitride (g‐C3N4) is exfoliated and transferred to the carbon nitride nanosheets (CNNSs), which are then coupled with MIL‐88B(Fe) to form the hybrid. From the results of the powder X‐ray diffraction, scanning electronic microscopy and thermogravimetric analysis, it is found that the doping of CNNSs on the surface of MIL‐88(Fe) could maintain the basic structure of MIL‐88B(Fe), and the smaller dimension of CNNSs might influence the crystallization process of metal‐organic frameworks (MOFs) compared to bulk g‐C3N4. Besides, the effects of the CNNSs incorporation on photocatalysis are also investigated. Through the photoluminescence spectra, electrochemical measurements, and photocatalytic experiments, the hybrid containing 6% CNNSs is certified to possess the highest catalytic activity to degrade methylene blue and reduce Cr(VI) under visible light. The improvement of the photocatalytic performance can be attributed to the matched energy level which favors the formation of the heterojunctions. Besides, it promotes the charge migration such that the contact between MOFs and CNNSs is more intimate, which can be inferred from the electronic microscopy images. Finally, a possible photocatalytic mechanism is put forward by the relative calculation and the employment of the scavengers to trap the active species.  相似文献   
974.
975.
976.
The silver‐embedded gelatin (AgG) thin film produced by the solution method of metal salts dissolved in gelatin is presented. Its simple fabrication method ensures the uniform distribution of Ag dots. Memory devices based on AgG exhibit good device performance, such as the ON/OFF ratio in excess of 105 and the coefficient of variation in less of 50%. To further investigate the position of filament formation and the role of each element, current sensing atomic force microscopy (CSAFM) analysis as well as elemental line profiles across the two different conditions in the LRS and HRS are analyzed. The conductive and nonconductive regions in the current map of the CSAFM image show that the conductive filaments occur in the AgG layer around Ag dots. The migration of oxygen ions and the redox reaction of carbon are demonstrated to be the driving mechanism for the resistive switching of AgG memory devices. The results show that dissolving metal salts in gelatin is an effective way to achieve high‐performance organic–electronic applications.  相似文献   
977.
Hierarchically porous carbon nanomaterials with well‐defined architecture can afford a promising platform for effectively addressing energy and environmental concerns. Herein, a totally green and straightforward synthesis strategy for the fabrication of hierarchically porous carbon nanotubes (HPCNTs) by a simple carbonization treatment without any assistance of soft/hard templates and activation procedures is demonstrated. A high specific surface area of 1419 m2 g?1 and hierarchical micro‐/meso‐/macroporosity can be achieved for the HPCNTs. The unique porous architecture enables the HPCNTs serving as excellent electrode/host materials for high‐performance supercapacitors and Li–sulfur batteries. The design strategy may pave a new avenue for the rational synthesis of hierarchically porous carbon nanostructures for high‐efficient energy storage applications.  相似文献   
978.
A facile chemical bath method is adopted to grow bismuth oxychloride (BiOCl) nanosheet arrays on a piece of Cu foil (denoted as BiOCl‐Cu) and isolated BiOCl nanosheets are collected by ultrasonication. A self‐supporting BiOCl film is obtained by the removal of Cu foil. Photodetectors (PDs) based on these BiOCl materials are assembled and the effects of morphologies and electrode configurations on the photoelectric performance of these PDs are examined. The BiOCl nanosheet PD achieves high responsivities in the spectral range from 250 to 350 nm, while it presents quite a small photocurrent and slow response speed. The BiOCl film PD yields low photocurrents and near‐unity on–off ratios, demonstrating poor photoelectric performance. The photocurrent of the BiOCl‐Cu PD with both electrodes on the BiOCl film is much higher than those of these above‐mentioned PDs, and the response times are fast. Meanwhile, the BiOCl‐Cu PD with separate electrodes on the BiOCl film and Cu foil achieves even higher photocurrents and presents a self‐powering characteristic, depicting the improved photodetecting performances induced by the specific morphology and distinct electrode configuration. These results would promote the applications of BiOCl nanostructures in the photoelectric devices.  相似文献   
979.
Li‐CO2 batteries are promising energy storage systems by utilizing CO2 at the same time, though there are still some critical barriers before its practical applications such as high charging overpotential and poor cycling stability. In this work, iridium/carbon nanofibers (Ir/CNFs) are prepared via electrospinning and subsequent heat treatment, and are used as cathode catalysts for rechargeable Li‐CO2 batteries. Benefitting from the unique porous network structure and the high activity of ultrasmall Ir nanoparticles, Ir/CNFs exhibit excellent CO2 reduction and evolution activities. The Li‐CO2 batteries present extremely large discharge capacity, high coulombic efficiency, and long cycling life. Moreover, free‐standing Ir/CNF films are used directly as air cathodes to assemble Li‐CO2 batteries, which show high energy density and ultralong operation time, demonstrating great potential for practical applications.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号