首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2223篇
  免费   154篇
  国内免费   17篇
电工技术   23篇
综合类   3篇
化学工业   788篇
金属工艺   58篇
机械仪表   58篇
建筑科学   65篇
矿业工程   1篇
能源动力   148篇
轻工业   247篇
水利工程   20篇
石油天然气   23篇
无线电   312篇
一般工业技术   319篇
冶金工业   85篇
原子能技术   18篇
自动化技术   226篇
  2024年   6篇
  2023年   19篇
  2022年   51篇
  2021年   99篇
  2020年   74篇
  2019年   89篇
  2018年   109篇
  2017年   101篇
  2016年   111篇
  2015年   89篇
  2014年   116篇
  2013年   227篇
  2012年   135篇
  2011年   120篇
  2010年   97篇
  2009年   116篇
  2008年   87篇
  2007年   65篇
  2006年   70篇
  2005年   31篇
  2004年   54篇
  2003年   32篇
  2002年   37篇
  2001年   41篇
  2000年   37篇
  1999年   35篇
  1998年   40篇
  1997年   40篇
  1996年   27篇
  1995年   24篇
  1994年   12篇
  1993年   11篇
  1992年   21篇
  1991年   13篇
  1990年   9篇
  1989年   8篇
  1988年   10篇
  1987年   9篇
  1986年   9篇
  1985年   15篇
  1984年   9篇
  1983年   12篇
  1982年   6篇
  1981年   9篇
  1980年   14篇
  1979年   7篇
  1976年   12篇
  1974年   4篇
  1973年   4篇
  1972年   6篇
排序方式: 共有2394条查询结果,搜索用时 15 毫秒
21.
This study describes the adsorption behavior of three arylthiophene derivatives namely: 2-(4-amidino-3-fluorophenyl)-5-[4-methoxy phenyl] thiophene dihydrochloride salt (MA-1217), 2-(4-amidinophenyl)-5-[4-chlorophenyl] thiophene dihydrochloride salt (MA-1316) and 2-(4-amidino-3-fluorophenyl)-5-[4-chlorophenyl]thiophene dihydrochloride salt (MA-1312) at C-steel in 1.0 mol·L-1 HCl interface using experimental and theoretical studies. Electrochemical and mass loss measurements showed that the inhibition efficiency (IE) of the arylthiophene derivatives increases with increasing concentrations and exhibited maximum efficiency 89% at 21×10-6 mol·L-1 (MA-1217) by mass loss method. The investigated arylthiophene derivatives obey the Langmuir adsorption isotherm. From polarization studies the arylthiophene derivatives act as mixed-type inhibitors. Surface analysis were carried out and discussed. The mode of orientation and adsorption of inhibitor molecules on C-steel surface was studied using molecular dynamics (MD) simulations. Quantum chemical parameters as well as the radial distribution function indices and binding energies confirm the experimental results.  相似文献   
22.
In this study, we investigate the immunomodulatory effects of a novel antimicrobial peptide, YD1, isolated from Kimchi, in both in vitro and in vivo models. We establish that YD1 exerts its anti-inflammatory effects via up-regulation of the Nrf2 pathway, resulting in the production of HO-1, which suppresses activation of the NF-κB pathway, including the subsequent proinflammatory cytokines IL-1β, IL-6, and TNF-α. We also found that YD1 robustly suppresses nitric oxide (NO) and prostaglandin E2 (PGE2) production by down-regulating the expression of the upstream genes, iNOS and COX-2, acting as a strong antioxidant. Collectively, YD1 exhibits vigorous anti-inflammatory and antioxidant activity, presenting it as an interesting potential therapeutic agent.  相似文献   
23.
Yuda Yürüm  Ismail Yiginsu 《Fuel》1981,60(11):1027-1030
A lignite (C, 67.4 wt%) was depolymerized with phenol, p-nitrophenol and o-chlorophenol using sulphuric acid as catalyst. The solubility of the lignite was enhanced by these treatments, with phenol being the most reactive reagent whereas p-nitrophenol was the least reactive. The distribution of nitro- and chloro-groups in the solubilized products was investigated by infrared spectrometry and it was found that these groups were redistributed among the pyridine- and methanol-soluble materials. It is suggested that benzene-soluble material is produced by self-depolymerization of coal or by degradation of pyridine- and methanol-soluble material.  相似文献   
24.
The electrochemical behavior of brasses with various Zn content (5.5–38 mass%) and brass (Cu–38Zn) with different Pb contents (1–3.4 mass%) in 0.6 M NaCl was investigated. The effects of temperature, immersion time, and concentration of chloride ions on the behavior of the different alloys were studied. The pitting corrosion behavior of Cu–Zn alloys and leaded–brass alloys in 0.6 M NaCl solution was also investigated. Open-circuit potential measurements (OCP), polarization techniques and electrochemical impedance spectroscopy (EIS) were used. The results show that the increase in the Zn content increases the corrosion rate of the brass alloys in chloride solutions, while the increase of Pb content in Cu–38Zn–Pb decreases the corrosion rate of the alloy. Long immersion time of the alloys in the aqueous electrolyte improves their stability due to the formation of passive film on the alloy surface. The breakdown potential is shifted to more negative direction with increasing the Zn content, whereas it shifts towards positive values with increasing Pb content. Equivalent circuit model for the electrode/electrolyte interface under different conditions was proposed to illustrate the electrochemical processes taking place at the interface. The electrochemical behavior of the different alloys was discussed in view of the fitting results.  相似文献   
25.
Production of novel porous material is a major target in current material science research due to its wide applications. As carbon nanotube (CNTs) is a one dimensional hollow structure it is also one of the promising materials in applications ranging from electronics to hydrogen storage medium. Catalytic chemical vapor deposition (CCVD) is a method whereby CNTs can be produced in large amount. Thus, in this work, we have synthesized CNTs via pyrolysis of acetylene using various supported transition-metal catalysts in a fixed-bed reactor. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to investigate the CNTs structure. The structures of nanotubes formed by acetylene pyrolysis were dependent on the catalysts used. It was found that alumina supported Ni/Fe catalyst inhibited the formation of CNTs growth while alumina supported Ni/Co catalyst gave high density of CNTs. However, nanotubes grown over alumina supported Ni/Fe catalyst were less dense due to the deactivation of the catalyst at the early stage of the pyrolysis process.  相似文献   
26.
The kinetics of the reaction of chalcopyrite, iron sulphide, copper sulphide, and nickel sulphide with sulphur trioxide gas were studied using a fluidised bed technique. O2, N2, or air was used as a carrier gas for the sulphur trioxide in fluidisation. Binary mixtures of finely ground (0.37–75 μm) samples were reacted with the sulphur trioxide in a Pyrex column at 373–673 K. The reaction products were leached with water and the soluble metals in the solution were determined by atomic absorption spectrometry. The total soluble reaction products were determined gravimetrically. The results obtained showed that a higher yield of soluble salts was obtained when O2 or air was used as a carrier gas for sulphur trioxide than when an inert gas was used. Higher yields of soluble salts were obtained when the samples were most finely ground. Increase of copper sulphide content in binary mixtures with iron or nickel sulphide led to an increase in the yield of soluble salts. For iron sulphide/nickel sulphide mixtures, the yield of soluble salts increased with the nickel sulphide content. There were maximum values for the soluble metal ratios Ni/Fe and Cu/Ni in the corresponding sulphide binary mixtures and this maximum was at about 50% weight. The soluble Cu/Fe ratio increased with copper sulphide content in mixtures with iron sulphide.  相似文献   
27.
Calcium is the most important in-situ catalyst for gasification of US coal chars in O2, CO2 and H2O. It is a poor catalyst for gasification of chars by H2. Potassium and sodium added to low-rank coals by ion exchange and high-rank coals by impregnation are excellent catalysts for char gasification in O2, CO2 and H2O. Carbon monoxide inhibits catalysis of the CH2O reaction by calcium, potassium and sodium; H2 inhibits catalysis by calcium. Thus injection of synthesis gas into the gasifier will inhibit the CH2O reaction. Iron is not an important catalyst for the gasification of chars in O2, CO2 and H2O, because it is invariably in the oxidized state. Carbon monoxide disproportionates to deposit carbon from a dry synthesis gas mixture (3 vol H2 + 1 vol CO) over potassium-, sodium- and iron-loaded lignite char and a raw bituminous coal char, high in pyrite, at 1123 K and 0.1 MPa pressure. The carbon is highly reactive, with the injection of 2.7 kPa H2O to the synthesis gas resulting in net carbon gasification. The effect of traces of sulphur in the gas stream on catalysis of gasification or carbon-forming reactions by calcium, potassium, or sodium is not well understood at present. Traces of sulphur do, however, inhibit catalysis by iron.  相似文献   
28.
Ismail Koyuncu 《Desalination》2002,143(3):243-253
In this study, DS5 DK type nanofiltration membranes were tested to recycle the reactive dye bath effluents. Reactive black 5 (RB5), reactive orange 16 (RO16), reactive blue 19 (RB19) and NaCl were used in the experiments to prepare the synthetic dye and salt mixtures. Effects of feed concentration, pressure and cross flow velocity on the permeate flux and color removal were investigated. Permeate flux increased with increasing pressure for all NaCl solutions. Dye concentration had a significant effect on flux values. Under the fixed NaCl concentrations the flux decreased with increasing dye concentrations. Dye rejections greater than 99% were achieved. Permeate was almost colorless. A gel layer formed by the rejected dye on membrane surface operates as a resistance to the permeation of dyes due to complete rejection of high molecule weight dyes, especially for the low salt concentrations. The presence of salt concentration has an interesting effect on color removal. Color removal decreased with increasing salt concentration. Cross flow velocities had also a significant effect on flux values. The dye formed agglomerates at high NaCl concentrations. High cross flow velocities decreased this effect.  相似文献   
29.
Graphite electrodes were prepared by mixing calcined coke and coal tar pitch. They were pressed under 250 kg cm–2 and heat treated up to 2800° C. Rectangles measuring 70 mm x 40 mm x 8 mm were anodically polarized under galvanostatic and potentiostatic conditions. Electrolyses were conducted at 10–50 mA cm–2 for periods ranging from 10–120 hours in Na2SO4 solutions acidified with sulphuric acid to various pH values. The wear of graphite anodes increased with decreasing bath temperature, increasing acid concentration, decreasing pH of the electrolyte and increasing current density. A model is suggested which assumes that corrosion takes place via the formation of a lamellar crystal compound with the formula (C 8 0 O)(OH)3HSO 4 ·2H2SO4.The compound is unstable at higher temperatures when corrosion is effected by oxidation of graphite by atomic oxygen. The formation of the carbon ions was found to be a necessary precondition for the formation of the complex.  相似文献   
30.
The performance of an experimental pilot-scale electrochemical reactor using a rotating cylindrical electrode equipped with wiper blades is described. Data obtained from monopolar depositing and bipolar stripping—depositing of copper from dilute aqueous electrolytes are presented and certain economic aspects of metal recovery are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号