Fibre Chemistry - Under modern conditions the creation of materials for sanitary hygiene and medical products based on cellulose is of paramount importance. Development and improvement in this area... 相似文献
The emerging trends in the development of advanced smart materials with better unique properties under different environments for a particular application fascinate the researchers and industrialists. Nickel-Titanium based shape memory alloys are exotic materials due to their unique properties such as SME, SE, high damping characteristics, high corrosion and wear resistance and biocompatibility. This article presents an overview of machining processes that can be used to machine the NiTi and its surface induced characteristics such as microhardness, surface roughness, topography, induced layer, residual stress, fatigue and phase transformation. The surface integrity characteristics are discussed for machining of NiTi-SMAs under the category of traditional, non-traditional and micro-machining with the effect of input parameters such as cutting speed, feed, depth of cut, type of lubricant and type of coating material on cutting tool. The conventional machining of NiTi alloys are quite complicated due to high toughness, severe strain hardening, fatigue hardening and distinctive property of NiTi-SMAs such as pseudoelastic and shape memory effect. From this study, non-traditional process is significantly used to machine the NiTi-SMAs due to its better results on surface integrity characteristics. Consequently, future trends are also identified for machining the NiTi-SMAs and to improve the surface integrity characteristics. 相似文献
Certain exact solutions to the linear differential-difference heat and mass transfer equations with a finite relaxation time are specified. The exact solution to the one-dimensional Stokes problem with the periodic boundary condition when a first-order volume chemical reaction occurs is given. A wide class of exact solutions to the nonlinear differential-difference heat-conduction equation with the following source is described: $$\Theta _t = div[f(T)\nabla T] + g(\Theta ), = T(r,t + \tau ),$$ where T = T(r, t) is temperature and τ is the relaxation time. Certain more complex heat conduction models with a variable relaxation time that can depend on time and a temperature gradient are also considered. 相似文献
Three-activated carbon aerogels were synthesized by CO2 activation of the materials prepared by the polycondensation of resorcinol and formaldehyde mixtures followed by supercritical drying. The obtained carbon aerogels were characterized and used as electrode materials for the electrosorption of sodium phosphate and nitrate. X-ray diffraction and Raman spectroscopy showed the dependence of the structural ordering of the aerogels with the resorcinol/catalyst ratio and the extent of activation. The electrosorption capacitance evaluated by cyclic voltammetry revealed large values for the activated samples containing a large contribution of mesopores, regardless the electrolyte salt. Due to an adequate combination of chemical and porous features, the desalting capacity of the activated carbon aerogel electrodes exceeded that of the as-prepared materials. The evaluation of the kinetic properties by chronocoulometric relaxation and impedance spectroscopy showed a decrease of time constant and resistances for highly mesoporous activated samples. A high deionization capacity and fast electrode discharge was detected for the deionization of sodium nitrate on the highly mesoporous activated aerogel. Data also showed the efficient electrosorption of ionic species on consecutive charge/discharge cycles, confirming the stability of the aerogel electrodes at the high applied potentials. 相似文献
Bio-ethanol is well known for its use as a gasoline additive. However, it can be blended in low portions to traditional gasoline although it has a corrosive nature. By taking advantage of modern continuous reactor technology and heterogeneous alumina catalysts, ethanol can be upgraded to 1-butanol in fixed beds. Butanol has more feasible properties as fuel component in comparison to ethanol. Mathematical modeling of reaction kinetics revealed a simple kinetic model could be used to describe the complex reaction process on a Cu/alumina catalyst. The reaction kinetics model is based on five parallel reactions in which ethanol reacts to 1-butanol, acetealdehyde, ethyl acetate, diethyl ether and diethoxyethane, respectively.
We present first-principles kinetic Monte Carlo (1p-kMC) simulations addressing the CO oxidation reaction at Pd(100) for gas-phase conditions ranging from ultra-high vacuum to ambient pressures and elevated temperatures. For the latter technologically relevant regime there is a long-standing debate regarding the nature of the active surface. The pristine metallic surface, an ultra-thin $(\sqrt{5}\times \sqrt{5})R27^{\circ}$PdO(101) surface oxide, and thicker oxide layers have each been suggested as the active state. We investigate these hypotheses with 1p-kMC simulations focusing on either the Pd(100) surface or the PdO(101) surface oxide and intriguingly obtain a range of (T, p)-conditions where both terminations appear metastable. The predicted bistability regime nicely ties in with oscillatory behavior reported experimentally by Hendriksen et al. (Catal Today 105:234, 2005). Within this regime we find that both surface terminations exhibit very similar intrinsic reactivity, which puts doubts on attempts to assign the catalytic function to just one active state. 相似文献