首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195702篇
  免费   2930篇
  国内免费   726篇
电工技术   3477篇
综合类   118篇
化学工业   31788篇
金属工艺   8252篇
机械仪表   5443篇
建筑科学   5279篇
矿业工程   959篇
能源动力   5159篇
轻工业   17653篇
水利工程   1937篇
石油天然气   3327篇
武器工业   3篇
无线电   21142篇
一般工业技术   36419篇
冶金工业   37266篇
原子能技术   4436篇
自动化技术   16700篇
  2021年   1533篇
  2019年   1490篇
  2018年   2374篇
  2017年   2354篇
  2016年   2528篇
  2015年   1835篇
  2014年   3149篇
  2013年   8934篇
  2012年   5254篇
  2011年   7232篇
  2010年   5730篇
  2009年   6584篇
  2008年   6675篇
  2007年   6714篇
  2006年   5722篇
  2005年   5360篇
  2004年   5074篇
  2003年   4707篇
  2002年   4643篇
  2001年   4465篇
  2000年   4262篇
  1999年   4391篇
  1998年   10785篇
  1997年   7752篇
  1996年   5997篇
  1995年   4618篇
  1994年   3900篇
  1993年   3894篇
  1992年   2903篇
  1991年   2743篇
  1990年   2669篇
  1989年   2698篇
  1988年   2613篇
  1987年   2352篇
  1986年   2322篇
  1985年   2636篇
  1984年   2451篇
  1983年   2277篇
  1982年   2089篇
  1981年   2173篇
  1980年   2030篇
  1979年   2042篇
  1978年   1990篇
  1977年   2321篇
  1976年   2873篇
  1975年   1728篇
  1974年   1716篇
  1973年   1762篇
  1972年   1452篇
  1971年   1342篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
A novel dual-rotation bobbin tool friction stir welding (DBT-FSW) was developed, in which the upper shoulder (US) and lower shoulder (LS) have different rotational speeds. This process was tried to weld 3.2 mm thick aluminum-lithium alloy sheets. The metallographic analysis and torque measurement were carried out to characterize the weld formability. Experimental results show that compared to conventional bobbin tool friction stir welding, the DBT-FSW has an excellent process stability, and can produce the defect-free joints in a wider range of welding parameters. These can be attributed to the significant improvement of material flow caused by the formation of a staggered layer structure and the unbalanced force between the US and LS during the DBT-FSW process.  相似文献   
82.
Technical Physics Letters - Using the method of DC magnetron sputtering, nonstructured amorphous metal coatings of Zr75Pd25 composition were obtained with an average deposition rate of 1.3 nm/s at...  相似文献   
83.
84.
This study aims to evaluate the tribological behaviour of 3Y-TZP/Ta (20 vol%) ceramic-metal composites and 3Y-TZP monolithic ceramic prepared by spark plasma sintering (SPS) against ultrahigh molecular weight polyethylene (UHMWPE). According to the results of pin (UHMWPE)-on-flat wear test under dry conditions, the UHMWPE – 3Y-TZP/Ta system exhibited lower volume loss and friction coefficient than the UHMWPE – monolithic ceramic combination due to the presence of an autolubricating layer that provides sufficient lubrication for reducing the friction. Owing to the lubrication of the liquid media, under wet conditions obtained using simulated body fluid (SBF), similar behaviour is observed in both cases. Additionally, the ceramic and biocomposite materials were subjected to a low temperature degradation (LTD) process (often referred to as “ageing”) to evaluate the changes in the tribological behaviour after this treatment. In this particular case, the wear properties of the UHMWPE-biocomposite system were found to be less influenced by ageing in contrast to the case of the UHMWPE-zirconia monolithic material. In addition to their exceptional mechanical performance, 3Y-TZP/Ta composites also showed high resistance to low temperature degradation and good tribological properties, making them promising candidates for biomedical applications, especially for orthopaedic implants.  相似文献   
85.
Tissue engineered grafts show great potential as regenerative implants for diseased or injured tissues within the human body. However, these grafts suffer from poor nutrient perfusion and waste transport, thus decreasing their viability post-transplantation. Graft vascularization is therefore a major area of focus within tissue engineering because biologically relevant conduits for nutrient and oxygen perfusion can improve viability post-implantation. Many researchers used microphysiological systems as testing platforms for potential grafts owing to an ability to integrate vascular networks as well as biological characteristics such as fluid perfusion, 3D architecture, compartmentalization of tissue-specific materials, and biophysical and biochemical cues. Although many methods of vascularizing these systems exist, microvascular self-assembly has great potential for bench-to-clinic translation as it relies on naturally occurring physiological events. In this review, the past decade of literature is highlighted, and the most important and tunable components yielding a self-assembled vascular network on chip are critically discussed: endothelial cell source, tissue-specific supporting cells, biomaterial scaffolds, biochemical cues, and biophysical forces. This paper discusses the bioengineered systems of angiogenesis, vasculogenesis, and lymphangiogenesis and includes a brief overview of multicellular systems. It concludes with future avenues of research to guide the next generation of vascularized microfluidic models.  相似文献   
86.
Crossover designs are an extremely useful tool to investigators, and group sequential methods have proven highly proficient at improving the efficiency of parallel group trials. Yet, group sequential methods and crossover designs have rarely been paired together. One possible explanation for this could be the absence of a formal proof of how to strongly control the familywise error rate in the case when multiple comparisons will be made. Here, we provide this proof, valid for any number of initial experimental treatments and any number of stages, when results are analyzed using a linear mixed model. We then establish formulae for the expected sample size and expected number of observations of such a trial, given any choice of stopping boundaries. Finally, utilizing the four-treatment, four-period TOMADO trial as an example, we demonstrate that group sequential methods in this setting could have reduced the trials expected number of observations under the global null hypothesis by over 33%.  相似文献   
87.
We study a maritime inventory routing problem, in which shipments between production and consumption nodes are carried out by a fleet of vessels. The vessels have specific capacities and can be chartered under different agreements. The inventory levels of all consumption nodes and some production nodes should be maintained within specified bounds; for the remaining production nodes, orders should be picked up within pre-defined time windows. We propose a discrete-time mixed-integer programming model. In the face of new information and uncertainty, this optimization model has to be re-solved, as the horizon is rolled forward. We discuss how to account for different sources of uncertainty. We present a rolling-horizon reoptimization framework that allows us to study different policies that impact the quality of the implemented solution, so we can identify the optimal set of policies.  相似文献   
88.
In optimization of transient problems, a robust, stable, and efficient numerical scheme for time integration is of much importance. Recently, the mixed Lag  相似文献   
89.
Itaconate (ITA) is an emerging powerhouse of innate immunity with therapeutic potential that is limited in its ability to be administered in a soluble form. A library of polyester materials that incorporate ITA into polymer backbones resulting in materials with inherent immunoregulatory behavior is developed. Harnessing hydrolytic degradation release from polyester backbones, ITA polymers result in the mechanism specific immunoregulatory properties on macrophage polarization in vitro. In a functional assay, the polymer-released ITA inhibits bacterial growth on acetate. Translation to an in vivo model of biomaterial associated inflammation, intraperitoneal injection of ITA polymers demonstrate a rapid resolution of inflammation in comparison to a control polymer silicone, demonstrating the value of sustained biomimetic presentation of ITA.  相似文献   
90.
Fluorescent nanodiamonds (fNDs) containing nitrogen vacancy (NV) centers are promising candidates for quantum sensing in biological environments. This work describes the fabrication and implementation of electrospun poly lactic‐co‐glycolic acid (PLGA) nanofibers embedded with fNDs for optical quantum sensing in an environment, which recapitulates the nanoscale architecture and topography of the cell niche. A protocol that produces uniformly dispersed fNDs within electrospun nanofibers is demonstrated and the resulting fibers are characterized using fluorescent microscopy and scanning electron microscopy (SEM). Optically detected magnetic resonance (ODMR) and longitudinal spin relaxometry results for fNDs and embedded fNDs are compared. A new approach for fast detection of time varying magnetic fields external to the fND embedded nanofibers is demonstrated. ODMR spectra are successfully acquired from a culture of live differentiated neural stem cells functioning as a connected neural network grown on fND embedded nanofibers. This work advances the current state of the art in quantum sensing by providing a versatile sensing platform that can be tailored to produce physiological‐like cell niches to replicate biologically relevant growth environments and fast measurement protocols for the detection of co‐ordinated endogenous signals from clinically relevant populations of electrically active neuronal circuits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号