首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3843篇
  免费   279篇
  国内免费   2篇
电工技术   18篇
综合类   3篇
化学工业   946篇
金属工艺   48篇
机械仪表   55篇
建筑科学   191篇
矿业工程   87篇
能源动力   59篇
轻工业   714篇
水利工程   29篇
石油天然气   9篇
无线电   231篇
一般工业技术   519篇
冶金工业   755篇
原子能技术   15篇
自动化技术   445篇
  2023年   37篇
  2022年   95篇
  2021年   128篇
  2020年   74篇
  2019年   77篇
  2018年   90篇
  2017年   122篇
  2016年   155篇
  2015年   132篇
  2014年   149篇
  2013年   298篇
  2012年   197篇
  2011年   230篇
  2010年   205篇
  2009年   166篇
  2008年   201篇
  2007年   197篇
  2006年   166篇
  2005年   145篇
  2004年   111篇
  2003年   93篇
  2002年   95篇
  2001年   71篇
  2000年   57篇
  1999年   59篇
  1998年   74篇
  1997年   68篇
  1996年   48篇
  1995年   51篇
  1994年   57篇
  1993年   37篇
  1992年   26篇
  1991年   18篇
  1990年   21篇
  1989年   22篇
  1988年   34篇
  1987年   33篇
  1986年   22篇
  1985年   31篇
  1984年   28篇
  1983年   28篇
  1982年   17篇
  1981年   23篇
  1980年   13篇
  1979年   19篇
  1978年   7篇
  1977年   11篇
  1975年   13篇
  1974年   8篇
  1970年   7篇
排序方式: 共有4124条查询结果,搜索用时 0 毫秒
141.
A series of 1,3,5-triazinyl aminobenzenesulfonamides substituted by aminoalcohol, aminostilbene, and aminochalcone structural motifs was synthesized as potential human carbonic anhydrase (hCA) inhibitors. The compounds were evaluated on their inhibition of tumor-associated hCA IX and hCA XII, hCA VII isoenzyme present in the brain, and physiologically important hCA I and hCA II. While the test compounds had only a negligible effect on physiologically important isoenzymes, many of the studied compounds significantly affected the hCA IX isoenzyme. Several compounds showed activity against hCA XII; (E)-4-{2-[(4-[(2,3-dihydroxypropyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (31) and (E)-4-{2-[(4-[(4-hydroxyphenyl)amino]-6-[(4-styrylphenyl)amino]-1,3,5-triazin-2-yl)amino]ethyl}benzenesulfonamide (32) were the most effective inhibitors with KIs = 4.4 and 5.9 nM, respectively. In addition, the compounds were tested against vancomycin-resistant Enterococcus faecalis (VRE) isolates. (E)-4-[2-({4-[(4-cinnamoylphenyl)amino]-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)ethyl]benzenesulfonamide (21) (MIC = 26.33 µM) and derivative 32 (MIC range 13.80–55.20 µM) demonstrated the highest activity against all tested strains. The most active compounds were evaluated for their cytotoxicity against the Human Colorectal Tumor Cell Line (HCT116 p53 +/+). Only 4,4’-[(6-chloro-1,3,5-triazin-2,4-diyl)bis(iminomethylene)]dibenzenesulfonamide (7) and compound 32 demonstrated an IC50 of ca. 6.5 μM; otherwise, the other selected derivatives did not show toxicity at concentrations up to 50 µM. The molecular modeling and docking of active compounds into various hCA isoenzymes, including bacterial carbonic anhydrase, specifically α-CA present in VRE, was performed to try to outline a possible mechanism of selective anti-VRE activity.  相似文献   
142.
143.
Excess dietary fructose is a major public health concern, yet little is known about its influence on offspring development and later-life disease when consumed in excess during pregnancy. To determine whether increased maternal fructose intake could have long-term consequences on offspring health, we investigated the effects of 10% w/v fructose water intake during preconception and pregnancy in guinea pigs. Female Dunkin Hartley guinea pigs were fed a control diet (CD) or fructose diet (FD; providing 16% of total daily caloric intake) ad libitum 60 days prior to mating and throughout gestation. Dietary interventions ceased at day of delivery. Offspring were culled at day 21 (D21) (weaning) and at 4 months (4 M) (young adult). Fetal exposure to excess maternal fructose intake significantly increased male and female triglycerides at D21 and 4 M and circulating palmitoleic acid and total omega-7 through day 0 (D0) to 4 M. Proteomic and functional analysis of significantly differentially expressed proteins revealed that FD offspring (D21 and 4 M) had significantly increased mitochondrial metabolic activities of β-oxidation, electron transport chain (ETC) and oxidative phosphorylation and reactive oxygen species production compared to the CD offspring. Western blotting analysis of both FD offspring validated the increased protein abundances of mitochondrial ETC complex II and IV, SREBP-1c and FAS, whereas VDAC1 expression was higher at D21 but lower at 4 M. We provide evidence demonstrating offspring programmed hepatic mitochondrial metabolism and de novo lipogenesis following excess maternal fructose exposure. These underlying asymptomatic programmed pathways may lead to a predisposition to metabolic dysfunction later in life.  相似文献   
144.
Although rare, inherited retinal degenerations (IRDs) are the most common reason for blind registration in the working age population. They are highly genetically heterogeneous (>300 known genetic loci), and confirmation of a molecular diagnosis is a prerequisite for many therapeutic clinical trials and approved treatments. First-tier genetic testing of IRDs with panel-based next-generation sequencing (pNGS) has a diagnostic yield of ≈70–80%, leaving the remaining more challenging cases to be resolved by second-tier testing methods. This study describes the phenotypic reassessment of patients with a negative result from first-tier pNGS and the rationale, outcomes, and cost of second-tier genetic testing approaches. Removing non-IRD cases from consideration and utilizing case-appropriate second-tier genetic testing techniques, we genetically resolved 56% of previously unresolved pedigrees, bringing the overall resolve rate to 92% (388/423). At present, pNGS remains the most cost-effective first-tier approach for the molecular assessment of diverse IRD populations Second-tier genetic testing should be guided by clinical (i.e., reassessment, multimodal imaging, electrophysiology), and genetic (i.e., single alleles in autosomal recessive disease) indications to achieve a genetic diagnosis in the most cost-effective manner.  相似文献   
145.
Inflammation and thrombosis are closely intertwined in numerous disorders, including ischemic events and sepsis, as well as coronavirus disease 2019 (COVID-19). Thrombotic complications are markers of disease severity in both sepsis and COVID-19 and are associated with multiorgan failure and increased mortality. Immunothrombosis is driven by the complement/tissue factor/neutrophil axis, as well as by activated platelets, which can trigger the release of neutrophil extracellular traps (NETs) and release further effectors of immunothrombosis, including platelet factor 4 (PF4/CXCL4) and high-mobility box 1 protein (HMGB1). Many of the central effectors of deregulated immunothrombosis, including activated platelets and platelet-derived extracellular vesicles (pEVs) expressing PF4, soluble PF4, HMGB1, histones, as well as histone-decorated NETs, are positively charged and thus bind to heparin. Here, we provide evidence that adsorbents functionalized with endpoint-attached heparin efficiently deplete activated platelets, pEVs, PF4, HMGB1 and histones/nucleosomes. We propose that this elimination of central effectors of immunothrombosis, rather than direct binding of pathogens, could be of clinical relevance for mitigating thrombotic complications in sepsis or COVID-19 using heparin-functionalized adsorbents.  相似文献   
146.
Human chorionic gonadotropin (hCG) has four major isoforms: classical hCG, hyperglycosylated hCG, free β subunit, and sulphated hCG. Classical hCG is the first molecule synthesized by the embryo. Its RNA is transcribed as early as the eight-cell stage and the blastocyst produces the protein before its implantation. This review synthetizes everything currently known on this multi-effect hormone: hCG levels, angiogenetic activity, immunological actions, and effects on miscarriages and thyroid function.  相似文献   
147.
Presented here is an investigation of the structure–property relationships of crosslinked networks using three bi-functional glycidyl ether aromatic epoxy resins, two bi-aryl and one tri-aryl, cured with bi- and tri-aryl amines. Subtle changes to the monomer chemistry including changing aromatic substitution patterns from meta to para, methylene to isopropyl and isopropyl to ether were explored. Changing an epoxy resin backbone from methylene to isopropyl enhances backbone rigidity thus increasing glass transition temperature (Tg), yield strength, and strain despite reducing modulus. Changing meta-substitution to para increases Tg and yield strain while leaving strength unaffected and reducing modulus. Changing isopropyl linkages to ether reduces modulus, strength, Tg, and yield strain reflecting increased molecular flexibility. Using three instead of two aromatic rings increases the molecular weight between crosslinks thereby decreasing Tg and yield strain while increasing modulus and strength. Despite the complexities of multiple systems for varying epoxy resins and amine hardeners, the effect upon network properties is explained in terms of short- and long-range molecular and segmental mobility, crosslink density, and equilibrium packing density. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48874.  相似文献   
148.
A novel biobased plasticizer made of cardanol is designed for poly(lactide) (PLA). This cardanol‐derived plasticizer, i.e., methoxylated hydroxyethyl cardanol (MeCard), is synthesized through methoxylation of the double bonds on the side chain of cardanol, and characterized by 1H NMR and mass spectrometry. The plasticization effect of MeCard on the molecular structure, morphology, thermal and mechanical properties of PLA is evaluated and compared to that of a commercial cardanol, i.e., hydroxyethyl cardanol (pCard). The plasticization efficiency of MeCard is demonstrated by a substantial decrease of the glass transition temperature and storage modulus together with a significant increase of the elongation at break as compared to neat PLA. Moreover, MeCard exhibits higher plasticization performance than pCard toward PLA. Such behavior is related to a higher miscibility and compatibility between PLA and MeCard thanks to the methoxylation of the double bonds on the side chain of cardanol as shown by SEM micrographs.

  相似文献   

149.
Additive manufacturing, sometimes referred to as 3D printing is a new, rapidly developing technology which has the potential to revolutionize fabrication of certain high value, complex products. Until now conventional elastomers have not been widely used in the additive manufacturing process. The goal of our work was to determine the feasibility of additive manufacturing using ink jet printing of elastomeric latex materials. Particle size, viscosity, and surface tension were measured for five different latex materials—poly(2‐chloro‐1,3‐butadiene), carboxylated styrene‐butadiene rubber, carboxylated butadiene‐acrylonitrile copolymer, natural rubber, and prevulcanized natural rubber. The XSBR latex was predicted as the one most likely to be printable. Printing trials carried out with the XSBR as the ink proved it to be printable, although technical problems of agglomeration and print head clogging need to be addressed and both the material and process need to be optimized for consistent printing to be achieved. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42931.  相似文献   
150.
Low rates of triacylglycerol (TAG) biosynthesis were observed in cell-free extracts ofCandida curvata, but rates were increased up to 10-fold by adding either α- or β-cyclodextrins. Spheroplasts, whole or gently disrupted, had higher rates of incorporation of both [U-14C]glycerol 3-phosphate or [1-14C]oleate into triacylglycerol and the intermediates of its biosynthesis: lysophosphatic acid, phosphatidic acid and diacylglycerol. Fatty acyl-CoA synthetase was highest with palmitate, oleate and linoleate but was some 6- to 8-fold lower with stearate. Stearate and stearoyl-CoA were poorly incorporated into lipids. Subcellular fractionation of the spheroplasts into mitochondrial, microsomal, lipid bodies and supernatant fractions diminished the rates of14C incorporation of oleate into triacylglycerol. By comparing the relative specific activities for each activity in each fraction, the fatty acyl-CoA synthetase activity appeared mainly in the lipid bodies, and that for phosphatidic acid formation was mainly in the mitochondrion; other activities were too weak and too dispersed for accurate assessment of their location. Recombining all the subcellular fractions restored triacylglycerol synthesizing activity. Omitting any single fraction from the mixture did not result in restoration of triacylglycerol synthesizing activity. Starvation of the yeast, which leads to utilization of the endogenous lipid reserves, stimulated fatty acyl-CoA synthetase activity, but diminished phosphatidic acid and triacylglycerol biosynthesis indicating probable induction of β-oxidation in the peroxisomes and repression of lipid biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号