首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   17篇
  国内免费   1篇
电工技术   1篇
化学工业   107篇
金属工艺   2篇
机械仪表   6篇
建筑科学   2篇
能源动力   22篇
轻工业   21篇
水利工程   3篇
石油天然气   1篇
无线电   12篇
一般工业技术   57篇
冶金工业   6篇
原子能技术   2篇
自动化技术   33篇
  2024年   1篇
  2023年   6篇
  2022年   10篇
  2021年   14篇
  2020年   23篇
  2019年   23篇
  2018年   13篇
  2017年   14篇
  2016年   18篇
  2015年   8篇
  2014年   16篇
  2013年   14篇
  2012年   20篇
  2011年   17篇
  2010年   10篇
  2009年   11篇
  2008年   7篇
  2007年   4篇
  2006年   11篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   7篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有275条查询结果,搜索用时 15 毫秒
111.
Huge quantity of petroleum and mineral-based cutting fluids mixed with carcinogenic additives to increase their performance is used every year in the manufacturing industry. Application of such fluids poses a serious hazard to the environment, workers, and personnel who directly or indirectly come in contact with them. Disposal of these cutting fluids without neutralization has a high potential of contaminating the water bodies and affects the aquatic life. Various vegetable-based cutting fluids have been formulated from edible oils, but less work is reported on non-edible oils. In this work, non-edible neem oil was used as a base oil and a food grade emulsifier was used. Thus, the cutting fluid is totally biodegradable. Various cutting fluids were formulated, and then, experiments were done on EN8 with uncoated carbides on lathe machine and various results reported. The neem oil has inherent anti-microbial properties and thus prevents microbial contamination for a long period of time. This newly developed cutting fluid does not require any neutralization before disposal.  相似文献   
112.
Classical problem of steady boundary layer flow of nanofluid over an exponentially permeable shrinking sheet in presence of slip is investigated. The model used for nanofluid includes Brownian motion and thermophoresis effects. The governing equations for momentum, energy, and nanofluid solid volume fraction are transformed to ordinary differential equations with the help of similarity transformations and then solved numerically using fourth order Runge–Kutta method with shooting technique. It is found that the governing parameters, viz. the suction/blowing parameter, velocity slip, thermal and mass slip parameters, Brownian motion parameter, thermophoresis parameter, Prandtl number, and Lewis number significantly affect the flow field, heat, and mass transfer. The results obtained indicate that the dual solutions exist for certain values of the mass suction parameter. Velocity increases whereas the temperature and nanoparticle volume fraction decrease due to suction through the porous sheet. It is noted that with the increase in velocity slip fluid velocity increases whereas temperature and concentration decrease. Due to increase in thermal slip and mass slip both temperature and concentration decrease.  相似文献   
113.
The ocean holds vast potential as a renewable energy source, but harnessing its power has been challenging due to low-frequency and high-amplitude stimulation. However, hybrid nanogenerators (HNGs) offer a promising solution to convert ocean energy into usable power efficiently. With their high sensitivity and flexible design, HNGs are ideal for low-frequency environments and remote ocean regions. Combining triboelectric nanogenerators (TENGs) with piezoelectric nanogenerators (PENGs) and electromagnetic nanogenerators (EMGs) creates a unique hybrid system that maximizes energy harvesting. Ultimately, hybrid energy-harvesting systems offer a sustainable and reliable solution for growing energy needs. This study provides an in-depth review of the latest research on ocean energy harvesting by hybrid systems, focusing on self-powered applications. The article also discusses primary hybrid designs for devices, powering self-powered units such as wireless communication systems, climate monitoring systems, and buoys as applications. The potential of HNGs is enormous, and with rapid advancements in research and fabrication, these systems are poised to revolutionize ocean energy harvesting. It outlines the pros and cons of HNGs and highlights the major challenges that must be overcome. Finally, future outlooks for hybrid energy harvesters are also discussed.  相似文献   
114.
The structural characteristics of transparent and conducting thin films of tin doped indium oxide (ITO) have been studied by X-ray diffraction and electron microscopy. The ITO films have been prepared by radio frequency sputtering employing a planar magnetron configuration. The effects of variation of substrate temperature and annealing have been studied. Films deposited at substrate temperatures up to 230° C show a marked 1 1 0 preferred orientation, whereas those deposited at 330° C are preferentially oriented in the 3 1 1 direction. Transmission electron micrographs of ITO films deposited on KCI crystals show the possible effects of strain on the structure, which are minimized to a great extent by annealing.  相似文献   
115.
116.
Plasmodium falciparum lysyl-tRNA synthetase (PfKRS) represents a promising therapeutic anti-malarial target. Cladosporin was identified as a selective and potent PfKRS inhibitor but lacks metabolic stability. Here, we report chemical synthesis, biological evaluation and structural characterization of analogues where the tetrahydropyran (THP) frame of cladosporin is replaced with the piperidine ring bearing functional group variations. Thermal binding, enzymatic, kinetic and parasitic assays complemented with X-ray crystallography reveal compounds that are moderate in potency. Co-crystals of Cla−B and Cla−C with PfKRS reveal key atomic configurations that allow drug binding to and inhibition of the enzyme. Collectively these piperidine ring scaffold inhibitors lay a framework for further structural editing and functional modifications of the cladosporin scaffold to obtain a potent lead.  相似文献   
117.
A hybrid convolutional neural network (CNN)-based model is proposed in the article for accurate detection of COVID-19, pneumonia, and normal patients using chest X-ray images. The input images are first pre-processed to tackle problems associated with the formation of the dataset from different sources, image quality issues, and imbalances in the dataset. The literature suggests that several abnormalities can be found with limited medical image datasets by using transfer learning. Hence, various pre-trained CNN models: VGG-19, InceptionV3, MobileNetV2, and DenseNet are adopted in the present work. Finally, with the help of these models, four hybrid models: VID (VGG-19, Inception, and DenseNet), VMI(VGG-19, MobileNet, and Inception), VMD (VGG-19, MobileNet, and DenseNet), and IMD(Inception, MobileNet, and DenseNet) are proposed. The model outcome is also tested using five-fold cross-validation. The best-performing hybrid model is the VMD model with an overall testing accuracy of 97.3%. Thus, a new hybrid model architecture is presented in the work that combines three individual base CNN models in a parallel configuration to counterbalance the shortcomings of individual models. The experimentation result reveals that the proposed hybrid model outperforms most of the previously suggested models. This model can also be used in the identification of diseases, especially in rural areas where limited laboratory facilities are available.  相似文献   
118.
The Ni1?xMnxO (x?=?0.00, 0.02, 0.04 and 0.06) nanoparticles were synthesized by chemical precipitation route followed by calcination at 500?°C for 4?h. The prepared samples were characterized by energy dispersive analysis of X-rays (EDAX), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). Rietveld refinement of XRD data confirms the structural phase purity and XRD patterns are well indexed to NaCl like rock salt fcc crystal structure with Fm-3m space group. The particle size of Mn doped samples is found to be less than that of pure NiO sample. However, the particle size increases slightly on increasing the Mn concentration due to surface/grain boundary diffusion. The vibrational properties of the synthesized nanoparticles were investigated by Raman and FT-IR spectroscopy. The results of room temperature magnetization (M-H) and temperature dependent magnetization (M-T) measurements are explained with a core-shell model. The synthesized nanoparticles show weak ferromagnetic and super-paramagnetic like behavior at room temperature.  相似文献   
119.
We examine an inflationary scenario in Bianchi Type V space-time for a barotropic fluid distribution with variable bulk viscosity and decaying vacuum energy density. We observe that the matter density ρ, the coefficient of bulk viscosity ζ and the expansion θ all diverge at τ = 0. The spatial volume increases with time, representing an inflationary scenario. The deceleration parameter q < 0 for barotropic, dust and radiation dominated models representing an accelerated universe, while for a stiff fluid distribution q > 0 corresponding to a decelerated universe. The vacuum energy density Λ decreases with time. The entropy per unit volume is proportional to the absolute temperature. The energy conditions (weak, dominant and strong) are discussed for the model. The reality condition ρ + p ≥ 0 is violated for the inflationary model due to the presence of a scalar field (φ). We also discuss the importance of Bianchi Type V model where the anisotropy dies away during the inflationary era. We also calculate the inflationary parameters and compare the results with the Planck data and discuss their compatibility with anisotropy and BAO estimates. The cosmological constant Λ is a function of time without break general covariance. We also discuss the bounds of the model, how the model isotropizes, where the fluid goes after inflation and how viscosity may realize a graceful exit from inflation to a radiation dominated era.  相似文献   
120.
This work reports the facile synthesis of nonaqueous zinc‐ion conducting polymer electrolyte (ZIP) membranes using an ultraviolet (UV)‐light‐induced photopolymerization technique, with room temperature (RT) ionic conductivity values in the order of 10?3 S cm?1. The ZIP membranes demonstrate excellent physicochemical and electrochemical properties, including an electrochemical stability window of >2.4 V versus Zn|Zn2+ and dendrite‐free plating/stripping processes in symmetric Zn||Zn cells. Besides, a UV‐polymerization‐assisted in situ process is developed to produce ZIP (abbreviated i‐ZIP), which is adopted for the first time to fabricate a nonaqueous zinc‐metal polymer battery (ZMPB; VOPO4|i‐ZIP|Zn) and zinc‐metal hybrid polymer supercapacitor (ZMPS; activated carbon|i‐ZIP|Zn) cells. The VOPO4 cathode employed in ZMPB possesses a layered morphology, exhibiting a high average operating voltage of ≈1.2 V. As compared to the conventional polymer cell assembling approach using the ex situ process, the in situ process is simple and it enhances the overall electrochemical performance, which enables the widespread intrusion of ZMPBs and ZMPSs into the application domain. Indeed, considering the promising aspects of the proposed ZIP and its easy processability, this work opens up a new direction for the emergence of the zinc‐based energy storage technologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号