首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   646篇
  免费   18篇
  国内免费   2篇
电工技术   11篇
综合类   1篇
化学工业   174篇
金属工艺   12篇
机械仪表   15篇
建筑科学   10篇
能源动力   26篇
轻工业   57篇
水利工程   2篇
石油天然气   1篇
无线电   68篇
一般工业技术   123篇
冶金工业   84篇
原子能技术   3篇
自动化技术   79篇
  2023年   7篇
  2022年   20篇
  2021年   21篇
  2020年   13篇
  2019年   15篇
  2018年   25篇
  2017年   28篇
  2016年   23篇
  2015年   20篇
  2014年   25篇
  2013年   42篇
  2012年   20篇
  2011年   39篇
  2010年   25篇
  2009年   28篇
  2008年   26篇
  2007年   28篇
  2006年   16篇
  2005年   8篇
  2004年   15篇
  2003年   6篇
  2002年   7篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   15篇
  1997年   15篇
  1996年   17篇
  1995年   13篇
  1994年   15篇
  1993年   12篇
  1992年   11篇
  1991年   17篇
  1990年   11篇
  1989年   10篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   8篇
  1977年   2篇
  1976年   3篇
  1975年   6篇
  1973年   3篇
  1966年   1篇
排序方式: 共有666条查询结果,搜索用时 12 毫秒
151.
A study was made in the present investigation on the development and characterization of 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) based phosphorus tetraglycidyl epoxy nanocomposites and to find its suitability for use in aerospace and high performance applications. Phosphorus-containing diamine (DOPO-NH2) was synthesized from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and 4,4′-diaminobenzophenone (DABP), and this is utilized for the preparation of DOPO based phosphorus containing tetraglycidyl epoxy denoted as ‘D’. The synthesized resin was characterized by Fourier transform infrared spectra (FT-IR) and 1H, 13C nuclear magnetic resonance (NMR) spectra. Nanoclay and polyhedral oligomeric silsesquioxane (POSS)-amine nano-reinforcements denoted as N1 and N2 were incorporated into the synthesized epoxy resin. Curing was done with diaminodiphenylmethane (DDM) and bis(3-aminophenyl) phenylphosphine oxide (BAPPO) curing agents denoted as X and Y respectively. Mechanical, thermal, flame retardant, water absorption behaviour and electrical properties of the epoxy nanocomposites were studied and the results are discussed.  相似文献   
152.
Dried cellular solids were produced using different hydrocolloids such as locust bean gum, low methoxy pectin, methyl cellulose and tapioca starch. They were dried to less than 5% (w.b) moisture content using freeze-drying, vacuum drying, vacuum microwave drying or air-drying methods. The dry cellular solids were subjected to uniaxial compression using a Texture analyzer to study the compressive characteristics. True stress–strain relationship curves were developed for the dry cellular solids produced by different drying methods. Hencky’s strain was calculated for true strain. Comparisons of samples dried by different drying methods were done in terms of their compressive characteristics at various water activities. No matter the type of drying, the dried materials were brittle at low water activity, plastic at medium water activity and elastomeric at higher water activity levels. Due to non-uniformity in air-dried samples and more closed pores in vacuum dried samples as well as less mechanical strength, these two were considered inferior for production of strong elastomeric foams. Microwave vacuum dried foams were mechanically the strongest. All the microwave vacuum dried samples were close in their Young’s modulus. Increases in microwave power did not make any appreciable changes in pore structures although higher microwave power levels resulted in faster drying.  相似文献   
153.
We did a comparative study on the adsorption capacity of Cr (VI) between functionalized carbon nanotubes (CNTs) and non-functionalized CNTs. The statistical analysis reveals that the optimum conditions for the highest removal of Cr (VI) are at pH 9, with dosage 0.1 gram, agitation speed and time of 120 rpm and 120 minutes, respectively. For the initial concentration of 1.0 mg/l, the removal efficiency of Cr (VI) using functionalized CNTs was 87.6% and 83% of non-functionalized CNTs. The maximum adsorption capacities of functionalized and non-functionalized CNTs were 2.517 and 2.49 mg/g, respectively. Langmuir and Freundlich models were adopted to study the adsorption isotherm, which provided a K L and K F value of 1.217 L/mg and 18.14 mg1?n L n /g functionalized CNT, while 2.365 L/mg and 2.307 mg1?n L n /g for non-functionalized CNTs. This result proves that functionalized CNTs are a better adsorbent with a higher adsorption capacity compared with the non-functionalized CNTs.  相似文献   
154.
Spray coating is demonstrated to produce different surface compositions of block copolymer films than spin coating even after annealing above the glass transition temperatures of both blocks. An amphiphilic block copolymer derived by chemically modifying the polyisoprene block of a polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene precursor with different molar ratios of 550 g/mol poly(ethylene glycol) monomethyl ether and a semifluorinated alcohol, 10-Perfluorodecyl-1-decanol, is used as a model system to investigate the effect. X-ray photoelectron spectroscopy demonstrated significantly higher amounts of CF2 and CF3 carbons at the surface for spray coated films while the overall concentration of C–O bonded carbons did not change. Near edge X-ray absorption fine structure spectroscopy shows a larger C1s → σC?F1 transition partial electron yield peak for the spray coated films and a negligible amount of polystyrene populating the surface for both solution deposition techniques. Water contact angles measured by the captive air bubble technique are found to be higher for the spray coated samples upon immersion in water. Scanning force microscopy also shows significant differences in the surface morphology of both films. These results indicate that it should not be assumed that the surface composition of a spin coated polymer film is representative of the same polymer deposited by spray coating.  相似文献   
155.
The removal of metsulfuron methyl (MeS)—a sulfonyl urea herbicide from contaminated water was investigated by advanced oxidation process (AOP) using Fenton method. The optimum dose of Fenton reagent (Fe2+/H2O2) was 10 mg/L Fe2+ and 60 mg/L H2O2 for an initial MeS concentration ([MeS]0) range of 0–80 mg/L. The Fenton process was effective under pH 3. The degradation efficiency of MeS decreased by more than 70% at pH > 3 (pH 4.5 and 7). The initial Fe2+ concentration ([Fe2+]0) in the Fenton reagent affected the degradation efficiency, rate and kinetics. The degradation of MeS at optimum dose of Fenton reagent was more than 95% for [MeS] 0 of 0–40 mg/L and the degradation time was less than 30 min. The determination of residual MeS concentration after Fenton oxidation by UV spectrophotometry was affected by the interferences from Fenton reagent. The estimation of residual MeS concentration after Fenton oxidation by high pressure/performance liquid chromatograph (HPLC) was interference free and represented the actual concentration of MeS and does not include the by-products of Fenton oxidation. The degradation kinetics of MeS was modelled by second order reactions involving 8 rate constants. The two reaction constants directly involving MeS were fitted using the experimental data and the remaining constants were selected from previously reported values. The model fit for MeS and the subsequent prediction of H2O2 were found to be within experimental error tolerances.  相似文献   
156.
In nuclear industry the role of conventional strong cation exchange resins is limited as they function less in high acid media. The phosphorous group that has got more affinity towards actinide elements is chosen as a chelating group and the phosphinic acid ion exchange resin was synthesized. The extraction ability of the phosphinic acid resin for plutonium (Pu) from HNO3 medium as well as from H2SO4 medium was studied. Though the resin shows better extraction for Pu than the strong cation exchanger resins at higher acidities, its kinetics is slow. In order to enhance the kinetics as well as to improve upon selectivity, a sulphonic group is introduced into the phosphinic acid resin. To verify the effect of bifunctionality extraction studies have been carried out with Pu from different acid media of varying concentrations. Sulphonated phosphinic acid resin shows a 2-fold increase in distribution coefficient (kd) as well as it reached equilibrium very fast compared to the phosphinic acid resin. It is postulated that the sulphonic acid ligand provides an access mechanism for the metal ions into the polymer matrix while it is the phosphinic acid group that is responsible for selective coordination of metal ions. Thus bifunctionality is coupling of an access mechanism to a recognition mechanism. The experiments carried out demonstrated the applicability of sulphonated phosphinic acid resin in the nuclear industry.  相似文献   
157.
Protein kinases are responsible for healthy cellular processes and signalling pathways, and their dysfunction is the basis of many pathologies. There are numerous small molecule inhibitors of protein kinases that systemically regulate dysfunctional signalling processes. However, attaining selectivity in kinase inhibition within the complex human kinome is still a challenge that inspires unconventional approaches. One of those approaches is photopharmacology, which uses light-controlled bioactive molecules to selectively activate drugs only at the intended space and time, thereby avoiding side effects outside of the irradiated area. Still, in the context of kinase inhibition, photopharmacology has thus far been rather unsuccessful in providing light-controlled drugs. Here, we present the discovery and optimisation of a photoswitchable inhibitor of casein kinase 1δ (CK1δ), important for the control of cell differentiation, circadian rhythm, DNA repair, apoptosis, and numerous other signalling processes. Varying the position at which the light-responsive azobenzene moiety has been introduced into a known CK1δ inhibitor, LH846, revealed the preferred regioisomer for efficient photo-modulation of inhibitory activity, but the photoswitchable inhibitor suffered from sub-optimal (photo)chemical properties. Replacement of the bis-phenyl azobenzene group with the arylazopyrazole moiety yielded a superior photoswitch with very high photostationary state distributions, increased solubility and a 10-fold difference in activity between irradiated and thermally adapted samples. The reasons behind those findings are explored with molecular docking and molecular dynamics simulations. Results described here show how the evaluation of privileged molecular architecture, followed by the optimisation of the photoswitchable unit, is a valuable strategy for the challenging design of the photoswitchable kinase inhibitors.  相似文献   
158.
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号