首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   49篇
电工技术   7篇
化学工业   197篇
金属工艺   20篇
机械仪表   6篇
建筑科学   35篇
矿业工程   2篇
能源动力   9篇
轻工业   161篇
水利工程   2篇
石油天然气   4篇
无线电   11篇
一般工业技术   38篇
冶金工业   13篇
原子能技术   1篇
自动化技术   50篇
  2024年   2篇
  2023年   10篇
  2022年   39篇
  2021年   54篇
  2020年   35篇
  2019年   34篇
  2018年   27篇
  2017年   27篇
  2016年   33篇
  2015年   18篇
  2014年   23篇
  2013年   39篇
  2012年   26篇
  2011年   36篇
  2010年   35篇
  2009年   23篇
  2008年   18篇
  2007年   20篇
  2006年   11篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有556条查询结果,搜索用时 15 毫秒
91.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. An important hallmark of PD involves the pathological aggregation of proteins in structures known as Lewy bodies. The major component of these proteinaceous inclusions is alpha (α)-synuclein. In different conditions, α-synuclein can assume conformations rich in either α-helix or β-sheets. The mechanisms of α-synuclein misfolding, aggregation, and fibrillation remain unknown, but it is thought that β-sheet conformation of α-synuclein is responsible for its associated toxic mechanisms. To gain fundamental insights into the process of α-synuclein misfolding and aggregation, the secondary structure of this protein in the presence of charged and non-charged surfactant solutions was characterized. The selected surfactants were (anionic) sodium dodecyl sulphate (SDS), (cationic) cetyltrimethylammonium chloride (CTAC), and (uncharged) octyl β-D-glucopyranoside (OG). The effect of surfactants in α-synuclein misfolding was assessed by ultra-structural analyses, in vitro aggregation assays, and secondary structure analyses. The α-synuclein aggregation in the presence of negatively charged SDS suggests that SDS-monomer complexes stimulate the aggregation process. A reduction in the electrostatic repulsion between N- and C-terminal and in the hydrophobic interactions between the NAC (non-amyloid beta component) region and the C-terminal seems to be important to undergo aggregation. Fourier transform infrared spectroscopy (FTIR) measurements show that β-sheet structures comprise the assembly of the fibrils.  相似文献   
92.
This study investigates the role of the polymeric binder on the properties and performance of an intumescent coating. Waterborne resins of different types (vinylic, acrylic, and styrene-acrylic) were incorporated in an intumescent paint formulation, and characterized extensively in terms of thermal degradation behavior, intumescence thickness, and thermal insulation. Thermal microscopy images of charred foam development provided further information on the particular performance of each type of coating upon heating. The best foam expansion and heat protection results were obtained with the vinyl binders. Rheological measurements showed a complex evolution of the viscoelastic characteristics of the materials with temperature. As an example, the vinyl binders unexpectedly hardened significantly after thermal degradation. The values of storage moduli obtained at the onset of foam blowing (melamine decomposition) were used to explain different intumescence expansion behaviors.  相似文献   
93.
94.
Linseed contains high levels of polyunsaturated fatty acids (PUFA), such as α-linolenic acid (> 50% ALA-18:3), that are naturally protected against thermal oxidation by their encapsulation within linseed oil bodies (OB) by multiple components including antioxidant proteins and mucilage emulsifying agents. Linseed OB emulsions (LSE) can be produced by grinding linseed seeds, adding water, adjusting pH, and sonication. This is a process that can encapsulate externally added PUFA to minimize their thermal oxidation, as it does for the intrinsic ALA PUFA. Fish oil (FO) encapsulation into this LSE platform to form linseed fish oil emulsions (LSFE) offers the possibility of a nutritive delivery system of the biologically essential FO PUFA eicosapentaenoic acid and docosahexaenoic acid. In this study, 1H low-field nuclear magnetic resonance (LF-NMR) is used to characterize LSE's and LSFE's chemical and structural properties as well as their stability and changes under thermal oxidation (55 °C for 96 hours). 1H LF-NMR data processing was developed to generate one-dimensional (1D) T1 (spin–lattice), 1D T2 (spin–spin), and 2D (T1 vs. T2) relaxation time spectra that can characterize OB emulsions and monitor their time domain fingerprints (spectrum peaks) of chemical and structural changes during the oxidation process. The 1H LF-NMR analysis were further supported and correlated with conventional peroxide value test, self-diffusion, droplet size distribution, zeta potential estimation of surface stability, and gas chromatography–mass spectrometry analysis of fatty acid profile changes under thermal oxidation conditions. The 1D and 2D LF-NMR relaxation spectra showed that the LSE and LSFE did not suffer intense oxidation process, due to PUFA assembly in OB oxidative protection. These results were further confirmed by the supportive analytical methodologies. The results of this study demonstrate the efficacy of 1H LF-NMR methodology to monitor PUFA's rich oil and emulsion thermal oxidation.  相似文献   
95.
Hybrid electrospun nanofibers of polycaprolactone (PCL)/gelatin are considered as drug-delivery systems for increasing the treatment efficacy in superficial (skin) wounds. Continuous delivery of therapeutic agents, skin extracellular matrix similarity, management of wound exudate, and antimicrobial barrier effect are the major advantages of electrospun nanofibers in skin applications. Additionally, combining the favorable properties of PCL and gelatin, regarding their biocompatibility, biodegradability and mechanical performance have been revealed promising parameters to be considered for blend in hybrid structures. However, the usual optimization protocol of nanofibers’ production in electrospinning is based on the observation of one-variable-at-time being this methodology expensive and time-consuming. Therefore, in this research work, a statistical model based on four input variables namely, the flow rate, the needle-working distance, the applied voltage, and the ratio of PCL in the solution, is developed to predict the behavior of nanofibers. The performance of nanofibers is monitored by measurements of fiber's diameter, mesh's thickness, and mesh's permeability. Overall, the model showed to be statistically significant (p-value < 0.05) and an independent analysis validated the predicted response for optimal condition. Finally, a delivery study is performed to evaluate the electrospun mesh performance as a drug carrier.  相似文献   
96.
Background. The tumor immune microenvironment exerts a pivotal influence in tumor initiation and progression. The aim of this study was to analyze the immune context of sporadic and familial adenomatous polyposis (FAP) lesions along the colorectal adenoma–carcinoma sequence (ACS). Methods. We analyzed immune cell counts (CD3+, CD4+, CD8+, Foxp3+, and CD57+), tumor mutation burden (TMB), MHC-I expression and PD-L1 expression of 59 FAP and 74 sporadic colorectal lesions, encompassing adenomas with low-grade dysplasia (LGD) (30 FAP; 30 sporadic), adenomas with high-grade dysplasia (22 FAP; 30 sporadic), and invasive adenocarcinomas (7 FAP; 14 sporadic). Results. The sporadic colorectal ACS was characterized by (1) a stepwise decrease in immune cell counts, (2) an increase in TMB and MHC-I expression, and (3) a lower PD-L1 expression. In FAP lesions, we observed the same patterns, except for an increase in TMB along the ACS. FAP LGD lesions harbored lower Foxp3+ T cell counts than sporadic LGD lesions. A decrease in PD-L1 expression occurred earlier in FAP lesions compared to sporadic ones. Conclusions. The colorectal ACS is characterized by a progressive loss of adaptive immune infiltrate and by the establishment of a progressively immune cold microenvironment. These changes do not appear to be related with the loss of immunogenicity of tumor cells, or to the onset of an immunosuppressive tumor microenvironment.  相似文献   
97.
Omega-3 polyunsaturated fatty acid (PUFA)-rich linseed oil (LSO) is an important component in biological systems, foods, and many other industrial products. In recent years, LSO has attracted increased attention in the field of functional foods, which has highlighted its facile susceptibility to aging by autoxidation. Common colorimetric and a long list of spectral methodologies have been used to follow after and predict LSO shelf life's quality, especially in regards to aging by autoxidation. These standard methodologies are nevertheless limited, because of the complexity of the LSO's chemical and physical changes. The goal of the present study is to develop a sensorial 1H LF-NMR energy relaxation time application based on monitoring primary chemical and structural changes occurring with time and temperature during oxidative thermal stress for better and rapid evaluation of LSO's aging process. Using 1H low-field NMR, the different T2 times of energy relaxations due to spin–spin coupling, and proton motion/mobility of LSO molecular segments were monitored. As previously reported, we characterized the chemical and structural changes in all phases of the autoxidation aging process. Starting from the initiation phase (abstraction of hydrogen radical, fatty acid chain rearrangement, and oxygen uptake yielding hydroperoxides products), through to the propagation phase (chain reactions resulting in tail cleavage to form alkoxy radicals, and alpha, beta-unsaturated aldehydes formation), and a termination phase (cross linking and production of polymerization end products). The 1H LF NMR transverse relaxation approach, monitors both the covalent bond's strong forces (100–400 kJ mol−1) in LSO oxidative aging decomposition, as well as secondary relatively weak interactive forces by hydrogen bonds (~70 kJ mol−1), and electrostatic bonds (0–50 kJ mol−1) contributing to secondary crosslinking interactions leading to a LSO viscous gel of polymerized products in the termination phase. In the present paper, we show that LSO tail segments mobility in terms of T2 multi-exponential energy relaxation time decays, generated by data reconstruction of 1H transverse relaxation components are providing a clear, sharp, and informative understanding of LSO sample's autoxidation aging processes. To support T2 time domain data analysis, we used data from high-field band-selective 1H NMR pulse excitation for quantification of hydroperoxides and aldehydes of the same LSO samples treated under the same thermal conditions (25, 40, 60, 80, 100, 120 °C) with pumped air for 168 hours. Peroxide value, viscosity, and self-diffusion analyses, as well as fatty acids profile and by-products determined by GC–MS on the same samples were carried out, and correlated with the LSO tail T2 energy relaxation time results. From these results, it is postulated that selective determination of LSO tail T2 time domain can be used as a rapid evaluation marker for following omega-3 PUFA-rich oils oxidative aging process within industrial and commercial products.  相似文献   
98.
Parkinsons Disease (PD) is the second most common neurodegenerative disease worldwide, and is characterized by a progressive degeneration of dopaminergic neurons. Without an effective treatment, it is crucial to find new therapeutic options to fight the neurodegenerative process, which may arise from marine resources. Accordingly, the goal of the present work was to evaluate the ability of the monoterpenoid lactone Loliolide, isolated from the green seaweed Codium tomentosum, to prevent neurological cell death mediated by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y cells and their anti-inflammatory effects in RAW 264.7 macrophages. Loliolide was obtained from the diethyl ether extract, purified through column chromatography and identified by NMR spectroscopy. The neuroprotective effects were evaluated by the MTT method. Cells’ exposure to 6-OHDA in the presence of Loliolide led to an increase of cells’ viability in 40%, and this effect was mediated by mitochondrial protection, reduction of oxidative stress condition and apoptosis, and inhibition of the NF-kB pathway. Additionally, Loliolide also suppressed nitric oxide production and inhibited the production of TNF-α and IL-6 pro-inflammatory cytokines. The results suggest that Loliolide can inspire the development of new neuroprotective therapeutic agents and thus, more detailed studies should be considered to validate its pharmacological potential.  相似文献   
99.
The high plasticity of cancer stem-like cells (CSCs) allows them to differentiate and proliferate, specifically when xenotransplanted subcutaneously into immunocompromised mice. CSCs are highly tumorigenic, even when inoculated in small numbers. Thus, in vivo limiting dilution assays (LDA) in mice are the current gold standard method to evaluate CSC enrichment and activity. The chick embryo chorioallantoic membrane (CAM) is a low cost, naturally immune-incompetent and reproducible model widely used to evaluate the spontaneous growth of human tumor cells. Here, we established a CAM-LDA assay able to rapidly reproduce tumor specificities—in particular, the ability of the small population of CSCs to form tumors. We used a panel of organotropic metastatic breast cancer cells, which show an enrichment in a stem cell gene signature, enhanced CD44+/CD24−/low cell surface expression and increased mammosphere-forming efficiency (MFE). The size of CAM-xenografted tumors correlate with the number of inoculated cancer cells, following mice xenograft growth pattern. CAM and mice tumors are histologically comparable, displaying both breast CSC markers CD44 and CD49f. Therefore, we propose a new tool for studying CSC prevalence and function—the chick CAM-LDA—a model with easy handling, accessibility, rapid growth and the absence of ethical and regulatory constraints.  相似文献   
100.
In this work, high-density lithium disilicate (LS2) vitreous systems were produced by melting and quenching under high pressure (7.7 GPa) following two distinct experimental routes. In the first case, LS2 glass was remelted at 7.7 GPa and 1600°C and, then, quenched. In the second case, a stoichiometric mixture of precursor oxides (Li2O and SiO2) was melted at 1600°C and 7.7 GPa before quenching. A reference LS2 glass sample was produced at atmospheric pressure using conventional melting and quenching procedure. The samples were characterized by X-ray diffraction, differential thermal analysis, and instrumented ultramicro hardness measurements. X-ray diffraction confirmed that all samples were amorphous and thermal analysis suggests that different glassy structures were produced depending on the route of synthesis. Hardness and elastic modulus of the glasses produced under high pressure were higher than those of the reference glass, reflecting the irreversible densification effect induced by the high-pressure processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号