首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   0篇
  国内免费   1篇
电工技术   2篇
化学工业   26篇
金属工艺   1篇
机械仪表   6篇
建筑科学   7篇
能源动力   19篇
轻工业   4篇
无线电   14篇
一般工业技术   10篇
冶金工业   1篇
原子能技术   4篇
自动化技术   5篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   6篇
  2013年   3篇
  2012年   4篇
  2011年   9篇
  2010年   7篇
  2009年   4篇
  2008年   8篇
  2007年   2篇
  2006年   3篇
  2005年   13篇
  2004年   2篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
排序方式: 共有99条查询结果,搜索用时 11 毫秒
21.
We present conventional detection of 2,4-dinitrophenol (DNP) for using the competitive reaction between DNP and DNP-conjugated albumin onto DNP antibody immobilized quartz crystal microbalance (QCM). This QCM method allows detection of DNP concentration in the range of 0.01 to 100 ng/ml; linear correlation obtains DNP concentration from 1 to 100 ng/ml.  相似文献   
22.
23.
24.
Hydrogen transport through Pd electrode with fractally rough surface was investigated in 0.1 M NaOH solution by analysis of the anodic current transient. The Pd electrode surfaces were electrochemically modified to be rough by redox cycling in 1 M H2SO4 solution. From the triangulation analysis of the atomic force microscopy images, it was found that the modified electrode surfaces exhibited self-similar scaling properties with different fractal dimensions, depending upon the number of redox cycles. The anodic current transient measured on the surface-modified fractal electrode subjected to the hydrogen discharging potentials of 0.3-0.7 V reversible hydrogen electrode, (RHE) showed the non-generalised Cottrell behaviour, which resulted from the constraint of hydrogen diffusion mixed with interfacial charge transfer during hydrogen transport. Especially, it displayed an inflexion point at the time that corresponds to the temporal outer cut-off of fractality, i.e. the crossover time required for the fractal to flat transition. In addition, the temporal outer cut-off under the constraint of mixed control was observed to be shortened with increasing hydrogen discharging potential, which could be accounted for by the increased growth rate of diffusion layer in the electrode accompanying the facilitated charge transfer kinetics at the electrode/electrolyte interface.  相似文献   
25.
All-solid-state cells (ASSCs) typically operate at a specific pressure to ensure good contact between the solid electrolyte and the electrode-active materials. However, establishing the ideal cell pressure is challenging because of the various cell structures, the mechanical characteristics of solid electrolytes, and the extent to which the volume of the electrodes changes during cycling. In this study, we propose a specially designed cell assembly that adjusts to the changes in volume that occur during cycling while maintaining a constant cell pressure. The evaluations indicate that the spring in the cell assembly effectively reduces the stress incurred from the volume expansion that occurs in the electrode during charging (lithiation) and the volume contraction that occurs during discharging (delithiation) while maintaining the prescribed cell pressure. The capacity fading—as a function of the cycle number—decreases when operating ASSCs comprising a cell assembly that include a spring, compared with those that exclude a spring. Focused ion beam–scanning electron microscope reveals no cracks and delamination in the LiNi0.8Co0.1Mn0.1O3 (NCM811) composite cathode of the ASSCs, operated at 25 MPa, with a spring-equipped assembly. The Ag nanolayer that deposits on the Cu foil is an effective collector metal, forming a dense lithium plating layer on the Ag/Cu foil anode.  相似文献   
26.
The electrochemical lithiation-delithiation reaction was examined for LiMnPO4 in which different cations were substituted for part of Mn. The X-ray diffraction analysis indicated that LiMnPO4 is tolerant, to some extent, to substitution of Mg2+, Ca2+ and Zr4+. The substitution of Mg2+ and/or Zr4+ led to an increased reversible capacity and a reduced polarization, whereas Ca2+ substitution had a detrimental effect on the electrochemical properties. The potential transient analysis showed that LiMn0.88Mg0.1Zr0.02PO4 has higher lithium diffusivities than pure LiMnPO4, indicating facilitated diffusion kinetics in the substituted material. Upon the first charge-discharge cycle, LiMn0.88Mg0.1Zr0.02PO4 suffered less irreversible capacity loss when compared with LiMnPO4, and smaller amounts of electrolyte salt-based species were detected on the electrode surface of LiMn0.88Mg0.1Zr0.02PO4.  相似文献   
27.
The Mission Analysis and Planning System (MAPS) has been developed for a low earth orbiting remote sensing satellite, Korea Multipurpose Satellite-I (KOMPSAT-I), to monitor and control the orbit and the attitude as well as to generate mission timelines and command plans. The MAPS has been designed using a top-down approach and modular programming method to ensure flexibility in modification and expansion of the system. Furthermore, a graphical user interface has been adopted to ensure user friendliness. Design, implementation, and testing of the KOMPSAT MAPS is discussed in this paper.  相似文献   
28.
A carbon gasified carbon-based fuel cell (CFC) short stack was fabricated and investigated for generating effective carbon fuel cell reactions. Anode-supported tubular CFC cells with a 45 cm2 active electrode area were used to manufacture the CFC short stack, which was coupled with a dry gasifier induced by a reverse Boudouard reaction. Activated carbon (BET area 1800 m2/g) powder was mixed with K2CO3 powder (5 wt.%) and used to fill a dry gasifier as a solid carbon fuel, and pure CO2 gas was supplied to the gasifier. The CO fuel generated by the reverse Boudouard reaction in the dry gasifier increased the performance of the CFC short stack. The tubular CFC short stack showed a maximum power of 29.4 W at 800 °C. It was operated under a range of operating conditions by changing the operating temperature, flow rate of the pure CO2 and the thermal cycle operation. The results indicate that the fabricated tubular CFC is a promising power generation system candidate for many practical applications, such as residential power generation (RPG) and stationary power systems.  相似文献   
29.
This paper provides an overview on the development of advanced fuel cell cathode catalysts at University of South Carolina (USC) with the emphasis on the stability of non-precious metal and Pt alloy catalysts. Nitrogen-modified carbon composite (NMCC) catalysts were developed for the oxygen reduction reaction (ORR) through the pyrolysis of cobalt (iron)-nitrogen chelate followed by the treatment combination of pyrolysis, acid leaching, and re-pyrolysis. A promising stability was observed for 1050 h fuel cell operation under current density of 200 mA cm−2 as evidenced by a potential decay rate as low as 40 μV h−1. The performance degradation mechanism of the NMCC-based fuel cell is discussed. Pt and PtPd hybrid catalysts are developed that use a NMCC, which is itself active for the ORR, instead of a conventional carbon black support. The stability test at 1 A cm−2 indicated that the Pt/NMCC hybrid catalyst (new Pt-Co/C) is more stable than the conventional Pt-Co/C without the Co leaching out. The PEM fuel cell accelerated stress test (AST) for supports and catalysts demonstrated that their stability changes in the order: Pt3Pd1/NMCC hybrid catalyst > Pt/NMCC hybrid catalyst > conventional Pt/C catalyst. Moreover, the hybrid catalysts exhibit higher mass activity than the Pt/C catalysts.  相似文献   
30.
An interconnect in solid oxide fuel cells electrically connects unit cells and separates fuel from oxidant in the adjoining cells. Metallic interconnects are usually coated with conductive oxides to improve their surface stability and to mitigate chromium poisoning of a cathode. In this study, Mn1.5Co1.5O4 (MCO) spinel oxides doped with Cu and Ni are synthesized and applied as protective coatings on a metallic interconnect (Crofer 22 APU). Doping of Cu and Ni into MCO improves sintering characteristics as well as electrical conductivity and thermal expansion match with the Crofer interconnect. The dense layers of Cu- and Ni-doped MCOs are fabricated on the interconnects by a slurry coating process and subsequent heat-treatment. The coated interconnects exhibit area-specific resistances as low as 13.9–17.6 mΩ cm2 at 800 °C. The Cu-doped MCO coating acts as an effective barrier to evaporation and migration of Cr-containing species from the interconnect, thereby reducing Cr poisoning of a cathode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号