首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   18篇
电工技术   5篇
化学工业   122篇
金属工艺   7篇
机械仪表   8篇
建筑科学   6篇
能源动力   43篇
轻工业   20篇
水利工程   4篇
石油天然气   2篇
无线电   27篇
一般工业技术   102篇
冶金工业   28篇
原子能技术   4篇
自动化技术   29篇
  2024年   1篇
  2023年   5篇
  2022年   18篇
  2021年   23篇
  2020年   7篇
  2019年   15篇
  2018年   17篇
  2017年   13篇
  2016年   17篇
  2015年   12篇
  2014年   19篇
  2013年   28篇
  2012年   18篇
  2011年   34篇
  2010年   11篇
  2009年   15篇
  2008年   15篇
  2007年   11篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   11篇
  2002年   7篇
  2001年   4篇
  2000年   9篇
  1999年   1篇
  1998年   10篇
  1997年   9篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   6篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   7篇
  1982年   4篇
  1981年   7篇
  1980年   1篇
  1978年   1篇
  1967年   1篇
排序方式: 共有407条查询结果,搜索用时 15 毫秒
61.
Cloud computing is becoming a profitable technology because of it offers cost-effective IT solutions globally. A well-designed task scheduling algorithm ensures the optimal utilization of clouds resources and reducing execution time dynamically. This research article deals with the task scheduling of inter-dependent subtasks on unrelated parallel computing machines in a cloud computing environment. This article considers two variants of the problem-based on two different objective function values. The first variant considers the minimization of the total completion time objective function while the second variant considers the minimization of the makespan objective function. Heuristic and meta-heuristic (HEART) based algorithms are proposed to solve the task scheduling problems. These algorithms utilize the property of list scheduling algorithm of unrelated parallel machine scheduling problem. A mixed integer linear programming (MILP) formulation has been provided for the two variants of the problem. The optimal solution is obtained by solving MILP formulation using A Mathematical Programming Language (AMPL) software. Extensive numerical experiments have been performed to evaluate the performance of proposed algorithms. The solutions obtained by the proposed algorithms are found to out-perform the existing algorithms. The proposed algorithms can be used by cloud computing service providers (CCSPs) for enhancing their resources utilization to reduce their operating cost.  相似文献   
62.
Vernonia galamensis [(Cass.) Less.] is a native of Ethiopia and Eritrea. Seed of vernonia contain substantial quantities of naturally epoxidized oil, which is used in the paint industry to reduce emissions of volatile organic compounds that produce smog resulting from the use of petroleum-based (alkyd-resin) paint. Epoxidized oil is also used in the manufacture of plasticizers, additives to polyvinyl chloride, polymer blends and coatings, and cosmetic and pharmaceutical applications. Previous research has indicated that vernonia has potential for commercialization in the mid-Atlantic region of the United States. This study characterized fatty acids in oil from vernonia grown in this latter region. Vernonia oil, from 14 vernonia lines grown during 1995 and 1996 under field conditions in Virginia, contained 3.3, 3.0, 5.0, 15.0, 0.2, 0.5, 0.4, and 72.7%, respectively, of C16:0, C18:0, C18:1, C18:2, C18:3, C20:0, C20:1, and vernolic (C18:1 epoxy) fatty acids. Effects of genotypes on vernonia oil quality were generally not significant whereas the effects of years were significant. The concentration of vernolic acid was positively correlated with oil concentration but negatively correlated with concentrations of all individual fatty acids, except for C18:3. Contribution of Virginia State University Agricultural Research Station, journal article series number 253. The use of any trade names or vendors does not imply approval to the exclusion of other products or vendors that may also be suitable.  相似文献   
63.
The thermostable chemically blended elastic poly‐(acrylic acid–sodium‐styrene‐sulfonate–graphene oxide) super‐absorbent hydrogel was synthesized by additive‐free gamma‐radiation induced polymerization followed by crosslinking method. It showed the best swelling ratio in water due to its porous nature. The composite material adsorbed 98 mg/g Cu(II) at room temperature from the aqueous solution of Cu(II) at pH 5 by the chemi‐adsorption of Cu(II) ions at several energetically heterogeneous functional groups. The copper nanoparticles (CuNPs) of size 12 ± 8 nm had been synthesized in situ by chemical reduction of the pre‐adsorbed Cu(II) ions. The functional groups of composite hydrogel served as complexing agent and nano‐reaction sites. Avoiding any pre‐reduction induction time, the inexpensive CuNPs catalytically completely decolorized the aqueous solution of 4‐nitrophenol (4‐NP) within 60 s in the presence of NaBH4 at a promising calculated rate constant (9.0 × 10?2/s) ever reported in the literatures. It is in contrast to the commonly noticeable phenomenon for other CuNPs‐based catalysis of 4‐NP. The composite hydrogel matrix helped to retain the catalytic activity of CuNPs and simultaneously it helped in the osmotic inclusion of 4‐NP into the reaction cites. This composite hydrogel synthesized through a chemically clean method could be utilized for efficient conversion of hazardous chemical 4‐NP to industrially important chemical 4‐aminophenol. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46200.  相似文献   
64.
Biocomposite scaffolds composed of PVA, ovalbumin, cellulose nanocrystals, and nanohydroxyapatite were fabricated by freeze-drying method. The results revealed that the different fractions of nanohydroxyapatite and cellulose nanocrystals provide the mechanical strength and stiffness to the desired biocomposite scaffolds. In vitro biomineralization showed the formation of apatite onto the surface of obtained biocomposite scaffolds and increased as amount of nanohydroxyapatite increased. The obtained results suggest that the different combinations of these four biomaterials can be used to fabricate highly porous scaffolds with desired mechanical performance and degradation rate by adjusting ratio for potential use in low load-bearing applications.  相似文献   
65.
Proper design of helium systems with large number of components and involved configurations such as helium liquefiers/refrigerators requires the use of tools like process simulators. The accuracy of the simulation results, to a great extent, depends on the accuracy of property data. For computation of thermodynamic properties of helium, the 32-parameter MBWR equation of state proposed by McCarty and Arp [1] is widely used. However, it is computationally involved, makes the simulation process more time-consuming and sometimes leads to computational difficulties such as numerical oscillations, divergence in solution especially, when the process operates over a wide thermodynamic region and is constituted of many components. Substituting MBWR EOS by simpler equations of state (EOS(s)) at selected thermodynamic planes, where the simpler EOS(s) have the similar accuracy as that of MBWR EOS may enhance ease of computation. In the present paper, the methodology to implement this concept has been elucidated with examples of steady state and dynamic simulation of helium liquefier/refrigerator based on Collins cycle. The above concept can be applied to thermodynamic analysis of other process cycles where computation of fluid property is involved.  相似文献   
66.
Bismuth–tin binary alloys containing high bismuth concentrations of 40 to 77% were continuously cast into wires of approximately 2 mm in diameter with casting speeds between 15 and 150 mm min?1 using the Ohno Continuous Casting (OCC) process. The microstructure was examined and tensile tests were performed for wires cast at various speeds. It was found that for slowly cast wires containing large primary bismuth dendrites, bismuth fracture occurring along the (111) plane exerted a key role in wire fracture, while microstructures with refined bismuth dendrites exhibited a mixture of bismuth cracks and inter-phase decohesion, allowing the accommodation of larger strain before wire fracture. For wires with microstructures containing primary tin dendrites, inter-phase decohesion played a key role in wire fracture.  相似文献   
67.
The objective of this work is to investigate the coupling of fluid dynamics, heat transfer and mass transfer during the impact and evaporation of droplets on a heated solid substrate. A laser-based thermoreflectance method is used to measure the temperature at the solid–liquid interface, with a time and space resolution of 100 μs and 20 μm, respectively. Isopropanol droplets with micro- and nanoliter volumes are considered. A finite-element model is used to simulate the transient fluid dynamics and heat transfer during the droplet deposition process, considering the dynamics of wetting as well as Laplace and Marangoni stresses on the liquid–gas boundary. For cases involving evaporation, the diffusion of vapor in the atmosphere is solved numerically, providing an exact boundary condition for the evaporative flux at the droplet–air interface. High-speed visualizations are performed to provide matching parameters for the wetting model used in the simulations. Numerical and experimental results are compared for the transient heat transfer and the fluid dynamics involved during the droplet deposition. Our results describe and explain temperature oscillations at the drop–substrate interface during the early stages of impact. For the first time, a full simulation of the impact and subsequent evaporation of a drop on a heated surface is performed, and excellent agreement is found with the experimental results. Our results also shed light on the influence of wetting on the heat transfer during evaporation.  相似文献   
68.
Nowadays aluminum alloys substitute copper in various applications for weight reduction and cost savings. This paper presents fuzzy-grey Taguchi technique for optimization of friction stir welding condition with seven weld quality attributes of dissimilar Al/Cu joints with the minimum number of experiments for effective productivity and product quality. Taguchi's L16 orthogonal array was used to conduct the experiments. Fuzzy inference system was adapted to convert the multi quality characteristics into an equivalent single quality parameter which was optimized by Taguchi approach. Four parameters namely, rotational speed of the tool, welding speed, plunging depth and tool pin offset were varied in four levels for investigating the effects on the process output like tensile strength, compressive strength, percentage of elongation, bending angle, weld bead thickness and average hardness at the nugget zone. The hardness profile is consistent with the variation of the structure within the nugget zone (NZ). Confirmation experiment was conducted using predicted optimum parameter setting and it showed that the proposed approach could efficiently optimize weld quality parameters. The microstructural analyses were also performed for all the zones of the joints at both Al and Cu sides. It revealed the finer grain size at the NZ compared to the base material due to dynamic recrystallization.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号