首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1281篇
  免费   64篇
  国内免费   11篇
电工技术   19篇
综合类   1篇
化学工业   393篇
金属工艺   38篇
机械仪表   36篇
建筑科学   30篇
矿业工程   1篇
能源动力   80篇
轻工业   113篇
水利工程   5篇
石油天然气   5篇
无线电   120篇
一般工业技术   310篇
冶金工业   69篇
原子能技术   10篇
自动化技术   126篇
  2024年   6篇
  2023年   51篇
  2022年   73篇
  2021年   96篇
  2020年   57篇
  2019年   70篇
  2018年   91篇
  2017年   60篇
  2016年   71篇
  2015年   42篇
  2014年   54篇
  2013年   95篇
  2012年   73篇
  2011年   74篇
  2010年   46篇
  2009年   41篇
  2008年   50篇
  2007年   35篇
  2006年   17篇
  2005年   11篇
  2004年   20篇
  2003年   18篇
  2002年   14篇
  2001年   14篇
  2000年   13篇
  1999年   6篇
  1998年   19篇
  1997年   17篇
  1996年   9篇
  1995年   8篇
  1994年   5篇
  1993年   12篇
  1992年   6篇
  1991年   5篇
  1990年   7篇
  1989年   6篇
  1988年   8篇
  1987年   2篇
  1986年   6篇
  1985年   10篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1980年   5篇
  1979年   3篇
  1976年   3篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有1356条查询结果,搜索用时 62 毫秒
21.
In this paper, we study the phase transition behavior emerging from the interactions among multiple agents in the presence of noise. We propose a simple discrete-time model in which a group of non-mobile agents form either a fixed connected graph or a random graph process, and each agent, taking bipolar value either +1 or -1, updates its value according to its previous value and the noisy measurements of the values of the agents connected to it. We present proofs for the occurrence of the following phase transition behavior: At a noise level higher than some threshold, the system generates symmetric behavior (vapor or melt of magnetization) or disagreement; whereas at a noise level lower than the threshold, the system exhibits spontaneous symmetry breaking (solid or magnetization) or consensus. The threshold is found analytically. The phase transition occurs for any dimension. Finally, we demonstrate the phase transition behavior and all analytic results using simulations. This result may be found useful in the study of the collective behavior of complex systems under communication constraints.  相似文献   
22.
Twitter is a radiant platform with a quick and effective technique to analyze users’ perceptions of activities on social media. Many researchers and industry experts show their attention to Twitter sentiment analysis to recognize the stakeholder group. The sentiment analysis needs an advanced level of approaches including adoption to encompass data sentiment analysis and various machine learning tools. An assessment of sentiment analysis in multiple fields that affect their elevations among the people in real-time by using Naive Bayes and Support Vector Machine (SVM). This paper focused on analysing the distinguished sentiment techniques in tweets behaviour datasets for various spheres such as healthcare, behaviour estimation, etc. In addition, the results in this work explore and validate the statistical machine learning classifiers that provide the accuracy percentages attained in terms of positive, negative and neutral tweets. In this work, we obligated Twitter Application Programming Interface (API) account and programmed in python for sentiment analysis approach for the computational measure of user’s perceptions that extract a massive number of tweets and provide market value to the Twitter account proprietor. To distinguish the results in terms of the performance evaluation, an error analysis investigates the features of various stakeholders comprising social media analytics researchers, Natural Language Processing (NLP) developers, engineering managers and experts involved to have a decision-making approach.  相似文献   
23.
Wireless Personal Communications - This work aims to implement a clustering scheme to separate vehicles into a cluster that is based on various parameters, such as the total number of relay nodes,...  相似文献   
24.
The Journal of Supercomputing - In the Attribute-Based Encryption (ABE) scheme, patients encrypt their electronic health record (EHR), attach the appropriate attributes with it, and outsource them...  相似文献   
25.
Development in manufacturing technology enhances the mechanical behavior of machined parts and improves the surface finish with high precision, which conveys the progressive importance of magnetic abrasive finishing (MAF) process. In current research work, magnetic abrasive particles were used as finishing tools during the MAF process. However, these magnetic abrasives are fabricated by special techniques, i.e., the adhesive bonding-based method, the sintering method, the plasma-based method and so on. The present study explores the basic finishing characteristics of the magnetic abrasive produced by the sintering process. After the sintering process, improved quality of magnetic abrasives was obtained, where the abrasive particle sticks on the base metal matrix. The abrasive particle used is alumina powder and the magnetic particle is iron powder. Experiments were performed on Stainless Steel 202 to inspect the sound effects of several process parameters such as rotational speed, electromagnet voltage, machining gap and abrasive particle size on machining performance. Apart from that, surface roughness was also measured, which revealed the influence of the abrasive particle on the machined surface in terms of surface finish. It is observed from this study that appropriate size of magnetic abrasive particle optimizes the surface finish.  相似文献   
26.
27.
Nickel oxide (NiO) thin films have been synthesized by simple and inexpensive chemical bath deposition at low temperature. The synthesized thin films were annealed at 623 K and used for further characterization. Structural and morphological properties of the NiO thin film were characterized using X-ray diffraction and scanning electron microscope (SEM), respectively. The structural study shows the simple cubic formation of NiO thin films with average crystallite size of 9 nm. Honeycomb like surface morphology with porous structure was observed from the SEM study. NiO thin film electrode has been used as a counter electrode in dye sensitized solar cell. Finally, photovoltaic parameters such as short circuit current density (Jsc), open circuit voltage (Voc), Fill Factor (FF) and efficiency (η) have been studied.  相似文献   
28.
29.
Cost-effective valorization of carbon dioxide into bulk and specialty chemicals using catalysis will be attractive in the foreseeable future. 1,3-Oxazolidin-2-one derivatives are one of the important classes of heterocyclic compounds which have wide applications in pharmaceutical industries due to their biological activities such as antibacterial, antimicrobial, antiseptic. Various synthetic routes are employed to prepare these compounds which include phosgenation, oxidative carbonylation, etc., which make use of polluting chemicals and homogeneous catalysts. The heterogeneous catalytic processes to synthesize these derivatives are quite limited. Thus, developing a green route which is environmental friendly is highly desirable. The current work deals with development of a heterogeneous reusable catalyst and its application to synthesize 1,3-oxazolidin-2-one derivatives using carbon dioxide as a C1 source. The fact that no use of promoter or organic co-catalyst is made in the current process makes the synthesis route more favorable. Pure La–MgO and K–La–MgO with different K loading (1, 3, 5, and 7 wt%) synthesized by combustion route were screened for carbonylation of diethanol amine. 5% K–La–MgO was found to be the best catalyst. The catalyst was well characterized in virgin form and after use by various analytical techniques like TEM, SEM, XRD, CO2 and NH3-TPD, BET surface area analysis. With 5% K–La/MgO, 72% conversion of diethanol amine was achieved with 100% selectivity of the desired product at optimum conditions, i.e., 150 °C, 5 wt% K–La/MgO catalyst loading of 0.02 g/cm3 and 2.0 MPa CO2 pressure. Reaction mechanism was proposed and kinetic model developed. The apparent activation energy was calculated as 18.76 kcal/mol. The catalyst was robust and recyclable. The process is clean and green.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号