首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1022篇
  免费   81篇
  国内免费   1篇
电工技术   5篇
综合类   1篇
化学工业   647篇
金属工艺   17篇
机械仪表   10篇
建筑科学   19篇
矿业工程   5篇
能源动力   20篇
轻工业   184篇
水利工程   5篇
石油天然气   2篇
无线电   25篇
一般工业技术   113篇
冶金工业   8篇
自动化技术   43篇
  2024年   2篇
  2023年   22篇
  2022年   192篇
  2021年   237篇
  2020年   52篇
  2019年   46篇
  2018年   50篇
  2017年   45篇
  2016年   59篇
  2015年   40篇
  2014年   60篇
  2013年   57篇
  2012年   50篇
  2011年   36篇
  2010年   25篇
  2009年   24篇
  2008年   24篇
  2007年   20篇
  2006年   15篇
  2005年   15篇
  2004年   15篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有1104条查询结果,搜索用时 15 毫秒
91.
Versatile optimization of the synthesis method and composition of Yb3+ and Tm3+ co-doped CaF2 nanoparticles as well as a novel biofunctionalization method were developed and evaluated.Through multistep synthesis,the luminescence intensity of the Tm3+ activator was enhanced by more than 10-fold compared to standard one-step synthesis.The proposed methods were used to homogenously distribute the doping ions within the nanoparticle's volume and thus reduce luminescence quenching.Optimization of dopant ions concentration led to the selection of the most efficient visible and near-infrared up-converting nanoparticles,which were CaF2 doped with 10% Yb3+ 0.05% Tm3+ and 20% Yb3+ 0.5% Tm3+,respectively.To illustrate the suitability of the synthesized nanoparticles as bio-labels,a dedicated biofunctionalization method was used,and the nanoparticles were applied for labeling and imaging of Candida albicans cells.This method shows great promise because of extremely low background and high specificity because of the presence of the attached molecules.  相似文献   
92.
A photoexcited porphyrin system has been found to be an efficient catalyst for D-limonene biotransformation. The catalyst showed high selectivity in hydroxylation of D-limonene. The best catalyst for limonene biotransformation was 5,10,15,20-Tetraphenylporphyrin (H2TPP), which gave the highest accumulation of carvone and an unknown product with a verbenone-like mass spectrum. The highest conversion yield of these products was favoured at 1:2 molar ratio of H2TPP to limonene. Some factors affecting the biotransformation yield were also investigated. Maximal yield of carvone was obtained in the medium containing 90% of the substrate, within the period of 18–36 h. Mechanism involved in limonene biotransformation catalysed by H2TPP is also discussed.  相似文献   
93.
At concentrations in which they occur on the plant surface and retard mitosis, coumarin and xanthotoxin lowered uptake of oxygen (by 60 and 30%, respectively) by meristematic cells ofAllium cepa root tips. They caused changes in the structure of the mitochondrial matrix to become dense, and protrusions of mitochondrial membranes were visible parallelling their hypertrophy, indicating alteration in the structure and physiology of these organelles. Coumarin and, to a lesser extent, xanthotoxin increased succinate dehydrogenase production in mitochondria and also in the cytoplasm, indicating changes in membrane permeability. Changes in oxygen uptake and mitochondrial structure, in addition to the retardation of mitosis, may be the reason these compounds act as allelochemicals after they have been removed from the plant surface and reach the root meristem.  相似文献   
94.
The incorporation of selective nanomaterials, such as common metal oxide semiconductor compositions, into resistive-type gas sensors has been shown by many researchers to lead to very high sensitivities and response rates, especially for micro-sized chemical sensors for room-temperature applications. The same strategy utilizing sensing nanomaterials has not been demonstrated for high-temperature sensors due to the intrinsic instability of typical metal oxide semiconductor nanomaterials at temperatures >500 °C. Within this work, doped Gd2Zr2O7 (GZO) nanomaterial compositions were investigated for H2 resistive-type sensors for applications between 600 and 1000 °C. This paper investigates the mechanism of H2 sensing for doped GZO nanomaterials and SnO2/GZO nanocomposites at the elevated temperatures. By integrating 10 vol.% nano-SnO2 into yttrium-doped GZO nanomaterials, a sensitivity of 4.15 % was retained for 4000 ppm H2 levels with a low signal drift of 0.42 %/h at 1000 °C in a 20 % O2/N2 gas stream. The signal drift was reduced by more than half of that compared to pure nano-SnO2 at the same conditions. The nano-GZO limited the grain growth of the nano-SnO2 particles and also prevented the nano-SnO2 from fully reducing to Sn at high temperatures in a low oxygen atmosphere. It is among the first resistive-type sensors operating at 1000 °C with sensing times of <5 min. This demonstration provided an example of a strategy of combining traditional metal oxide semiconductor and refractory nanomaterial compositions to form sensing nanocomposites with new sensing mechanisms, as well as, enhanced chemical and microstructural stabilities in high-temperature environments.  相似文献   
95.
Currently available analyses of amyloid proteins reveal the necessity of the existence of radical structural changes in amyloid transformation processes. The analysis carried out in this paper based on the model called fuzzy oil drop (FOD) and its modified form (FOD-M) allows quantifying the role of the environment, particularly including the aquatic environment. The starting point and basis for the present presentation is the statement about the presence of two fundamentally different methods of organizing polypeptides into ordered conformations—globular proteins and amyloids. The present study shows the source of the differences between these two paths resulting from the specificity of the external force field coming from the environment, including the aquatic and hydrophobic one. The water environment expressed in the fuzzy oil drop model using the 3D Gauss function directs the folding process towards the construction of a micelle-like system with a hydrophobic core in the central part and the exposure of polarity on the surface. The hydrophobicity distribution of membrane proteins has the opposite characteristic: Exposure of hydrophobicity at the surface of the membrane protein with an often polar center (as in the case of ion channels) is expected. The structure of most proteins is influenced by a more or less modified force field generated by water through the appropriate presence of a non-polar (membrane-like) environment. The determination of the proportion of a factor different from polar water enables the assessment of the protein status by indicating factors favoring the structure it represents.  相似文献   
96.
Recent studies on cyclin-dependent kinase (CDK) inhibitors have revealed that small molecule drugs have become very attractive for the treatment of cancer and neurodegenerative disorders. Most CDK inhibitors have been developed to target the ATP binding pocket. However, CDK kinases possess a very similar catalytic domain and three-dimensional structure. These features make it difficult to achieve required selectivity. Therefore, inhibitors which bind outside the ATP binding site present a great interest in the biomedical field, both from the fundamental point of view and for the wide range of their potential applications. This review tries to explain whether the ATP competitive inhibitors are still an option for future research, and highlights alternative approaches to discover more selective and potent small molecule inhibitors.  相似文献   
97.
Palmitic acid (C16:0) is the most abundant saturated fatty acid in animals serving as a substrate in synthesis and β-oxidation of other lipids, and in the modification of proteins called palmitoylation. The influence of dietary palmitic acid on protein S-palmitoylation remains largely unknown. In this study we performed high-throughput proteomic analyses of a membrane-enriched fraction of murine liver to examine the influence of a palm oil-rich diet (HPD) on S-palmitoylation of proteins. HPD feeding for 4 weeks led to an accumulation of C16:0 and C18:1 fatty acids in livers which disappeared after 12-week feeding, in contrast to an accumulation of C16:0 in peritoneal macrophages. Parallel proteomic studies revealed that HPD feeding induced a sequence of changes of the level and/or S-palmitoylation of diverse liver proteins involved in fatty acid, cholesterol and amino acid metabolism, hemostasis, and neutrophil degranulation. The HPD diet did not lead to liver damage, however, it caused progressing obesity, hypercholesterolemia and hyperglycemia. We conclude that the relatively mild negative impact of such diet on liver functioning can be attributed to a lower bioavailability of palm oil-derived C16:0 vs. that of C18:1 and the efficiency of mechanisms preventing liver injury, possibly including dynamic protein S-palmitoylation.  相似文献   
98.
Three new heterogemini sulfobetaines and their chloride salts were synthesised. The interfacial activities of the obtained chlorides in aqueous solution were studied by equilibrium and dynamic surface tension measurements. The critical micelle concentration, surface excess concentration, minimum area per surfactant molecule and standard Gibbs energy of adsorption as well as micelle lifetime and diffusion coefficient were determined. The adsorption properties and micelle lifetime of these compounds significantly depend on the length of alkyl chain. The critical micelle concentration decreases with increasing chain length of the compounds considered. The values of the diffusion coefficient of N‐alkyl‐N‐methyl‐N‐(3‐sulfopropyl)‐6‐(N‐alkyl‐N‐methylamino)hexylammonium chloride tend to decrease as the concentration is increased.  相似文献   
99.
Fetal growth restriction (FGR) is one of the most formidable challenges in present-day antenatal care. Pathological fetal growth is a well-known factor of not only in utero demise in the third trimester, but also postnatal morbidity and unfavorable developmental outcomes, including long-term sequalae such as metabolic diseases, diabetic mellitus or hypertension. In this review, the authors present the current state of knowledge about the genetic disturbances responsible for FGR diagnosis, divided into fetal, placental and maternal causes (including preeclampsia), as well as their impact on prenatal diagnostics, with particular attention on chromosomal microarray (CMA) and noninvasive prenatal testing technique (NIPT).  相似文献   
100.
Arabidopsis thaliana possesses two acyl-CoA:lysophosphatidylethanolamine acyltransferases, LPEAT1 and LPEAT2, which are encoded by At1g80950 and At2g45670 genes, respectively. Both single lpeat2 mutant and double lpeat1 lpeat2 mutant plants exhibit a variety of conspicuous phenotypes, including dwarfed growth. Confocal microscopic analysis of tobacco suspension-cultured cells transiently transformed with green fluorescent protein-tagged versions of LPEAT1 or LPEAT2 revealed that LPEAT1 is localized to the endoplasmic reticulum (ER), whereas LPEAT2 is localized to both Golgi and late endosomes. Considering that the primary product of the reaction catalyzed by LPEATs is phosphatidylethanolamine, which is known to be covalently conjugated with autophagy-related protein ATG8 during a key step of the formation of autophagosomes, we investigated the requirements for LPEATs to engage in autophagic activity in Arabidopsis. Knocking out of either or both LPEAT genes led to enhanced accumulation of the autophagic adaptor protein NBR1 and decreased levels of both ATG8a mRNA and total ATG8 protein. Moreover, we detected significantly fewer membrane objects in the vacuoles of lpeat1 lpeat2 double mutant mesophyll cells than in vacuoles of control plants. However, contrary to what has been reported on autophagy deficient plants, the lpeat mutants displayed a prolonged life span compared to wild type, including delayed senescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号