首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1020篇
  免费   84篇
  国内免费   1篇
电工技术   5篇
综合类   1篇
化学工业   648篇
金属工艺   17篇
机械仪表   10篇
建筑科学   19篇
矿业工程   5篇
能源动力   20篇
轻工业   184篇
水利工程   5篇
石油天然气   2篇
无线电   25篇
一般工业技术   112篇
冶金工业   9篇
自动化技术   43篇
  2024年   2篇
  2023年   22篇
  2022年   193篇
  2021年   237篇
  2020年   52篇
  2019年   46篇
  2018年   50篇
  2017年   45篇
  2016年   59篇
  2015年   40篇
  2014年   60篇
  2013年   56篇
  2012年   50篇
  2011年   36篇
  2010年   25篇
  2009年   24篇
  2008年   24篇
  2007年   20篇
  2006年   15篇
  2005年   15篇
  2004年   15篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有1105条查询结果,搜索用时 0 毫秒
31.
The pathogenesis of the disorders of calcium metabolism is not fully understood. This review discusses the studies in which metabolomics was applied in this area. Indeed, metabolomics could play an essential role in discovering biomarkers and elucidating pathological mechanisms. Despite the limited bibliography, the present review highlights the potential of metabolomics in identifying the biomarkers of some of the most common endocrine disorders, such as primary hyperparathyroidism (PHPT), secondary hyperparathyroidism (SHPT), calcium deficiency, osteoporosis and vitamin D supplementation. Metabolites related to above-mentioned diseorders were grouped into specific classes and mapped into metabolic pathways. Furthermore, disturbed metabolic pathways can open up new directions for the in-depth exploration of the basic mechanisms of these diseases at the molecular level.  相似文献   
32.
33.
Stress and anxiety are common phenomena that contribute to many nervous system dysfunctions. More and more research has been focusing on the importance of the gut–brain axis in the course and treatment of many diseases, including nervous system disorders. This review aims to present current knowledge on the influence of psychobiotics on the gut–brain axis based on selected diseases, i.e., Alzheimer’s disease, Parkinson’s disease, depression, and autism spectrum disorders. Analyses of the available research results have shown that selected probiotic bacteria affect the gut–brain axis in healthy people and people with selected diseases. Furthermore, supplementation with probiotic bacteria can decrease depressive symptoms. There is no doubt that proper supplementation improves the well-being of patients. Therefore, it can be concluded that the intestinal microbiota play a relevant role in disorders of the nervous system. The microbiota–gut–brain axis may represent a new target in the prevention and treatment of neuropsychiatric disorders. However, this topic needs more research. Such research could help find effective treatments via the modulation of the intestinal microbiome.  相似文献   
34.
35.
Abnormal glycosylation of cancer cells is considered a key factor of carcinogenesis related to growth, proliferation, migration and invasion of tumor cells. Many plant-based polyphenolic compounds reveal potential anti-cancer properties effecting cellular signaling systems. Herein, we assessed the effects of phenolic acid, p-coumaric acid and flavonoids such as kaempferol, astragalin or tiliroside on expression of selected cancer-related glycoforms and enzymes involved in their formation in AGS gastric cancer cells. The cells were treated with 80 and 160 µM of the compounds. RT-PCR, Western blotting and ELISA tests were performed to determine the influence of polyphenolics on analyzed factors. All the examined compounds inhibited the expression of MUC1, ST6GalNAcT2 and FUT4 mRNAs. C1GalT1, St3Gal-IV and FUT4 proteins as well as MUC1 domain, Tn and sialyl T antigen detected in cell lysates were also lowered. Both concentrations of kaempferol, astragalin and tiliroside also suppressed ppGalNAcT2 and C1GalT1 mRNAs. MUC1 cytoplasmic domain, sialyl Tn, T antigens in cell lysates and sialyl T in culture medium were inhibited only by kaempferol and tiliroside. Nuclear factor NF-κB mRNA expression decreased after treatment with both concentrations of kaempferol, astragalin and tiliroside. NF-κB protein expression was inhibited by kaempferol and tiliroside. The results indicate the rationality of application of examined polyphenolics as potential preventive agents against gastric cancer development.  相似文献   
36.
The amyloid structures and their wild type forms, available in the PDB database, provide the basis for comparative analyses. Globular proteins are characterised by a 3D spatial structure, while a chain in any amyloid fibril has a 2D structure. Another difference lies in the structuring of the hydrogen bond network. Amyloid forms theoretically engage all the NH and C=O groups of the peptide bonds in a chain with two hydrogen bonds each. In addition, the hydrogen bond network is highly ordered—as perpendicular to the plane of the chain. The β-structure segments provide the hydrogen bond system with an anti-parallel system. The folds appearing in the rectilinear propagation of the segment with the β-structure are caused by just by one of the residues in the sequence—residues with a Rα-helical or Lα-helical conformation. The antiparallel system of the hydrogen bonds in the β-structure sections at the site of the amino acid with a Rα- or Lα-helical conformation changes into a parallel system locally. This system also ensures that the involvement of the C=O and H-N groups in the construction of the interchain hydrogen bond, while maintaining a perpendicular orientation towards the plane of the chain. Conformational analysis at the level of the Phi and Psi angles indicates the presence of the conditions for the structures observed in the amyloids. The specificity of amyloid structures with the dominant conformation expressed as |Psi| = |Phi| reveals the system of organisation present in amyloid fibrils. The Phi, Psi angles, as present in this particular structure, transformed to form |Psi| = |Phi| appear to be ordered co-linearly. Therefore, the calculation of the correlation coefficient may express the distribution around this idealised localisation on the Ramachandran map. Additionally, when the outstanding points are eliminated, the part of amyloid chain can be classified as fulfilling the defined conditions. In addition, the presentation of the chain structure using geometric parameters, V-angle—the angle between the planes of the adjacent peptide bonds (angle versus the virtual axis Cα-Cα) and the radius of the curvature R, depending on the size of the angle V, allows for a quantitative assessment of changes during amyloid transformation.  相似文献   
37.
38.
Skin and gastrointestinal cancer cells are the target of research by many scientists due to the increasing morbidity and mortality rates around the world. New indications for drugs used in various conditions are being discovered. Non-opioid analgesics are worth noting as very popular, widely available, relatively cheap medications. They also have the ability to modulate the membrane components of tumor cells. The aim of this review is to analyze the impact of diclofenac, ibuprofen, naproxen, acetylsalicylic acid and paracetamol on skin and gastrointestinal cancers cell membrane. These drugs may affect the membrane through topical application, at the in vitro and in vivo level after oral or parenteral administration. They can lead to up- or downregulated expression of receptors, transporters and other molecules associated with plasma membrane. Medications may also alter the lipid bilayer composition of membrane, resulting in changes in its integrity and fluidity. Described modulations can cause the visualization of cancer cells, enhanced response of the immune system and the initiation of cell death. The outcome of this is inhibition of progression or reduction of tumor mass and supports chemotherapy. In conclusion, non-opioid analgesics may be used in the future as adjunctive therapy for the treatment of these cancers.  相似文献   
39.
Brain injury, especially traumatic brain injury (TBI), may induce severe dysfunction of extracerebral organs. Cardiac dysfunction associated with TBI is common and well known as the brain–heart crosstalk, which broadly refers to different cardiac disorders such as cardiac arrhythmias, ischemia, hemodynamic insufficiency, and sudden cardiac death, which corresponds to acute disorders of brain function. TBI-related cardiac dysfunction can both worsen the brain damage and increase the risk of death. TBI-related cardiac disorders have been mainly treated symptomatically. However, the analysis of pathomechanisms of TBI-related cardiac dysfunction has highlighted an important role of melatonin in the prevention and treatment of such disorders. Melatonin is a neurohormone released by the pineal gland. It plays a crucial role in the coordination of the circadian rhythm. Additionally, melatonin possesses strong anti-inflammatory, antioxidative, and antiapoptotic properties and can modulate sympathetic and parasympathetic activities. Melatonin has a protective effect not only on the brain, by attenuating its injury, but on extracranial organs, including the heart. The aim of this study was to analyze the molecular activity of melatonin in terms of TBI-related cardiac disorders. Our article describes the benefits resulting from using melatonin as an adjuvant in protection and treatment of brain injury-induced cardiac dysfunction.  相似文献   
40.
One of the possible alternatives for creating materials for the regeneration of bone tissue supporting comprehensive reconstruction is the incorporation of active substances whose controlled release will improve this process. This systematic review aimed to identify and synthesize in vitro studies that assess the suitability of polyphenolics as additives to polymer-ceramic composite bone regeneration materials. Data on experimental studies in terms of the difference in mechanical, wettability, cytocompatibility, antioxidant and anti-inflammatory properties of materials were synthesized. The obtained numerical data were compiled and analyzed in search of percentage changes of these parameters. The results of the systematic review were based on data from forty-six studies presented in nineteen articles. The addition of polyphenolic compounds to composite materials for bone regeneration improved the cytocompatibility and increased the activity of early markers of osteoblast differentiation, indicating a high osteoinductive potential of the materials. Polyphenolic compounds incorporated into the materials presumably give them high antioxidant properties and reduce the production of reactive oxygen species in macrophage cells, implying anti-inflammatory activity. The evidence was limited by the number of missing data and the heterogeneity of the data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号