首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   11篇
  国内免费   2篇
化学工业   114篇
金属工艺   5篇
机械仪表   4篇
建筑科学   5篇
能源动力   3篇
轻工业   15篇
无线电   1篇
一般工业技术   16篇
冶金工业   4篇
自动化技术   4篇
  2022年   39篇
  2021年   39篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2017年   7篇
  2016年   7篇
  2015年   2篇
  2014年   6篇
  2013年   10篇
  2012年   10篇
  2011年   6篇
  2010年   10篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
31.
Sorption of P to the filter material Filtralite-P was examined at a small, medium and large scale. In the small- and meso-scale laboratory models, the sorbed amount of total phosphorus (P) was heterogeneously distributed with more P sorbed in the inlet zone and the bottom layers. The full-scale system had, on the other hand, the highest sorbed concentration in the outlet region. The overall P sorption capacity of the material was 8030, 4990 and 521 mg P kg(-1) Filtralite-P for Box 1, Box 2 and meso scale, respectively. This equals 4.4, 2.8 and 0.29 kg P m(-3) material, respectively. However, the maximum sorption capacities found were 2500, 3887 and 4500 mg P kg(-1) Filtralite-P for the two small-scale box systems and the meso-scale container, respectively. In the full-scale system the overall P sorption capacity of the material was 52 mg P kg(-1) Filtralite-P (0.029 kg P m(-3) Filtralite-P with a maximum sorbed amount of P of 249 mg P kg(-1). Results from both the small- and meso-scale system show that when a constructed wetland (CW) is saturated, i.e. when the outlet concentration has reached its maximum allowed concentration of 1.0 mg P l(-1), only parts of the filter material will have reached the sorption capacity. Sequential extractions of Filtralite-P showed that the loosely bound P, Ca-P and Al-P were the primary P sorption pools both in the small-scale models and in the full-scale CW. However, the proportion of these three fractions varied with time and change in pH. A white product precipitated in the outlet zone of both the small-scale box models as well as the onsite CW. The surface of these precipitation particles was identified by X-ray diffraction and SEM method as CaCO3 and precipitated Ca- and Mg-phosphates.  相似文献   
32.
Dioecious species differ in the pattern and intensity of male and female reproductive investments. We aimed to determine whether female shoots deprived of generative buds show biochemical features, indicating their less-pronounced reproductive effort. For this purpose, the same branches of mature Taxus baccata females were deprived of generative organs. In the second and third years of the experiment, measurements were made in every season from the control and bud-removed shoots of females and control males. Bud removal caused an increase in nitrogen concentration almost to the level detected in the needles of male specimens, but only in current-year needles. Moreover, differences between male and control female shoots were present in the C:N ratio and increment biomass, but they disappeared when bud removal was applied to females. Additionally, between-sex differences were observed for content of phenolic compounds, carbon and starch, and SLA, independent of the female shoot reproductive effort. The study revealed that nitrogen uptake in seeds and arils may explain the lower nitrogen level and consequently the lower growth rate of females compared to males. At the same time, reproduction did not disturb carbon level in adjacent tissues, and two hypotheses explaining this phenomenon have been put forward.  相似文献   
33.
MAGE (melibiose-derived advanced glycation end-product) is the glycation product generated in the reaction of a model protein with melibiose. The in vivo analog accumulates in several tissues; however, its origin still needs explanation. In vitro MAGE is efficiently generated under dry conditions in contrast to the reaction carried in an aqueous solvent. Using liquid chromatography coupled with mass spectrometry, we analyzed the physicochemical properties and structures of myoglobin glycated with melibiose under different conditions. The targeted peptide analysis identified structurally different AGEs, including crosslinking and non-crosslinking modifications associated with lysine, arginine, and histidine residues. Glycation in a dry state was more efficient in the formation of structures containing an intact melibiose moiety (21.9%) compared to glycation under aqueous conditions (15.6%). The difference was reflected in characteristic fluorescence that results from protein structural changes and impact on a heme group of the model myoglobin protein. Finally, our results suggest that the formation of in vitro MAGE adduct is initiated by coupling melibiose to a model myoglobin protein. It is confirmed by the identification of intact melibiose moieties. The intermediate glycation product can further rearrange towards more advanced structures, including cross-links. This process can contribute to a pool of AGEs accumulating locally in vivo and affecting tissue biology.  相似文献   
34.
The serious clinical course of SARS-CoV-2 infection is usually accompanied by acute kidney injury (AKI), worsening prognosis and increasing mortality. AKI in COVID-19 is above all a consequence of systemic dysregulations leading to inflammation, thrombosis, vascular endothelial damage and necrosis. All these processes rely on the interactions between innate immunity elements, including circulating blood cells, resident renal cells, their cytokine products, complement systems, coagulation cascades and contact systems. Numerous simultaneous pathways of innate immunity should secure an effective host defense. Since they all form a network of cross-linked auto-amplification loops, uncontrolled activation is possible. When the actions of selected pathways amplify, cascade activation evades control and the propagation of inflammation and necrosis worsens, accompanied by complement overactivity and immunothrombosis. The systemic activation of innate immunity reaches the kidney, where the damage affecting single tubular cells spreads through tissue collateral damage and triggers AKI. This review is an attempt to synthetize the connections between innate immunity components engaged in COVID-19-related AKI and to summarize the knowledge on the pathophysiological background of processes responsible for renal damage.  相似文献   
35.
Although light-emitting diode (LED) technology has extended the research on targeted photomorphogenic, physiological, and biochemical responses in plants, there is not enough direct information about how light affects polyamine metabolism. In this study, the effect of three spectral compositions (referred to by their most typical characteristic: blue, red, and the combination of blue and red [pink] lights) on polyamine metabolism was compared to those obtained under white light conditions at the same light intensity. Although light quality induced pronounced differences in plant morphology, pigment contents, and the expression of polyamine metabolism-related genes, endogenous polyamine levels did not differ substantially. When exogenous polyamines were applied, their roborative effect were detected under all light conditions, but these beneficial changes were correlated with an increase in polyamine content and polyamine metabolism-related gene expression only under blue light. The effect of the polyamines on leaf gene expression under red light was the opposite, with a decreasing tendency. Results suggest that light quality may optimize plant growth through the adjustment of polyamine metabolism at the gene expression level. Polyamine treatments induced different strategies in fine-tuning of polyamine metabolism, which were induced for optimal plant growth and development under different spectral compositions.  相似文献   
36.
37.
Oxidation of Metals - It is widely accepted that the growth of protective α-Al2O3 scales on Ni-based alloys is governed by the inward diffusion of oxygen through the oxide grain boundaries...  相似文献   
38.
Juh&#;sz  Kinga  Varga  Bence  Bagi  P&#;ter  Hell  Zolt&#;n 《Catalysis Letters》2022,152(4):1100-1108
Catalysis Letters - Copper(II) on 4 Å molecular sieve was found to be an efficient heterogeneous catalyst in the addition of different H-phosphinates and secondary phosphine oxides to...  相似文献   
39.
The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity.  相似文献   
40.
Pasteurization parameters for grade A milk are well established and set by regulation. However, as solids levels increase, an increased amount of heat is required to destroy any pathogens present. This effect is not well characterized. In this work, the effect of increased dairy solids levels on the thermal resistance of Listeria monocytogenes was examined through the use of ultrafiltered (UF) milk, reconstituted milk powder, and the milk components lactose and caseinate. From the results obtained, lactose and caseinate did not appear to affect thermal resistance. In addition, the level of milk fat, up to 10% of the total solids in UF whole milk, did not result in statistically significant changes to thermal resistance when compared with UF skim milk. Reconstituted skim milk powder at 27% total solids (D?2-value = 1.16 ± 0.2 [SD] min, z = 5.7) did result in increased thermal resistance, as compared with reconstituted skim milk powder at 17.5% (D?2-value = 0.86 ± 0.02 min, z = 5.57) and UF whole milk at 27% total solids (D?2-value = 0.66 ± 0.07 min, z = 5.16). However, that increase appeared to be due to the increase in salt levels, not to increases in caseinate, fat, or lactose. Consequently, total solids, as a single measure, could not be used to predict increased thermal resistance of L. monocytogenes in concentrated milk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号