首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   18篇
  国内免费   1篇
电工技术   5篇
综合类   1篇
化学工业   65篇
金属工艺   9篇
机械仪表   8篇
建筑科学   12篇
能源动力   22篇
轻工业   21篇
无线电   41篇
一般工业技术   90篇
冶金工业   15篇
原子能技术   3篇
自动化技术   89篇
  2024年   2篇
  2023年   18篇
  2022年   18篇
  2021年   23篇
  2020年   24篇
  2019年   17篇
  2018年   15篇
  2017年   29篇
  2016年   16篇
  2015年   12篇
  2014年   18篇
  2013年   39篇
  2012年   15篇
  2011年   27篇
  2010年   10篇
  2009年   17篇
  2008年   19篇
  2007年   17篇
  2006年   8篇
  2005年   12篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
排序方式: 共有381条查询结果,搜索用时 718 毫秒
101.
Joseph  J. S. David  Kumaragurubaran  B.  Sathish  S. 《SILICON》2020,12(6):1481-1489
Silicon - Aluminium alloy with silicon as alloying element finds more comprehensive applications and this induces the development of aluminium composite with the matrix AA6063 (AlMg0.5Si) alloy....  相似文献   
102.
A Survey of Computation Offloading for Mobile Systems   总被引:1,自引:1,他引:0  
Mobile systems have limited resources, such as battery life, network bandwidth, storage capacity, and processor performance. These restrictions may be alleviated by computation offloading: sending heavy computation to resourceful servers and receiving the results from these servers. Many issues related to offloading have been investigated in the past decade. This survey paper provides an overview of the background, techniques, systems, and research areas for offloading computation. We also describe directions for future research.  相似文献   
103.

The work demonstrates the development of an electrochemical sensor for quantification of Chloramphenicol (CA) using pencil graphite electrode (PGE) modified with Gadolinium tungstate nano flakes and carbon nano fibers composite (PGE/GWNfs/CNFs). The composite was further characterized and confirmed by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, transmission electron microscopy analysis. The prepared GWNfs/CNFs nano composite was fabricated by drop casting method to get PGE/GWNfs/CNFs working electrode. The modified electrode is then analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods for its electrochemical and electrocatalytic property. The electrochemical investigation of developed sensor shows enhanced activity towards electro-oxidation of CA. The DPV studies revealed high efficacy characteristics such as sensitivity in the range 0.03984 µA µM?1 cm?2, selectivity, good linear range (5–50 μM), and low detection limit (0.4 μM). The study benchmarks the use of GWNfs/CNFs as an excellent transducer material in electrochemical sensing of CA in standard samples thus, it finds an efficient potential application in the analysis of CA in environment sample analysis.

  相似文献   
104.
Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells   总被引:4,自引:0,他引:4  
We describe the use of highly ordered transparent TiO(2) nanotube arrays in dye-sensitized solar cells (DSCs). Highly ordered nanotube arrays of 46-nm pore diameter, 17-nm wall thickness, and 360-nm length were grown perpendicular to a fluorine-doped tin oxide-coated glass substrate by anodic oxidation of a titanium thin film. After crystallization by an oxygen anneal, the nanotube arrays are treated with TiCl(4) to enhance the photogenerated current and then integrated into the DSC structure using a commercially available ruthenium-based dye. Although the negative electrode is only 360-nm-thick, under AM 1.5 illumination the generated photocurrent is 7.87 mA/cm(2), with a photocurrent efficiency of 2.9%. Voltage-decay measurements indicate that the highly ordered TiO(2) nanotube arrays, in comparison to nanoparticulate systems, have superior electron lifetimes and provide excellent pathways for electron percolation. Our results indicate that remarkable photoconversion efficiencies may be obtained, possibly to the ideal limit of approximately 31% for a single photosystem scheme, with an increase of the nanotube-array length to several micrometers.  相似文献   
105.
This study explored the possibility of using waste organic solvent as the source of volatile organic compound (VOC) and it served as a reducing agent of selective catalytic reduction (SCR) deNOx process, in which the VOC itself can be catalytically oxidized on the mesoporous Cu and/or Al substituted MCM-41 catalysts. The synthesized Cu–Al–MCM-41 catalysts were extensively characterized by powder low-angle X-ray diffraction (XRD), N2 adsorption–desorption measurements, transmission electron microscopy (TEM), UV–Visible diffuse reflectance spectroscopy (UV–Vis DRS), 27Al magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR), electron paramagnetic resonance spectroscopy (EPR) and inductively coupled plasma–mass spectrometer (ICP–MS) analysis. The XRD, TEM and N2 adsorption–desorption studies clearly demonstrated the presence of a well ordered long range hexagonal array with uniform mesostructures. The Cu–Al–MCM-41 materials showed a better long-term-stability than that of copper ion-exchanged H–ZSM-5 (Cu–ZSM-5) zeolite. The Cu–Al–MCM-41 material was found to be an efficient catalyst than that of Cu–MCM-41 without aluminum for the simultaneous catalytic abatement of NOx and VOCs, which was attributed to the presence of well dispersed and isolated Cu2+ ions on the Cu–Al–MCM-41 catalyst as observed by UV–Vis DRS and EPR spectroscopic studies. And the presence of aluminum (Al3+ ions) within the framework of Cu–Al–MCM-41 stabilized the isolated Cu2+ ions thus it led to higher and stabilized activity in terms of NOx reduction.  相似文献   
106.
We examine the light absorbing behavior of dye-sensitized solar cells (DSCs) having cathodes (negative electrodes) comprised of highly ordered TiO2 nanotube arrays using the electromagnetic computational technique, finite-difference time domain (FDTD). The highly ordered nanotube arrays, grown using anodic oxidation of titanium foils or thin films, feature an open end with the other end fixed on a dense oxide layer (barrier layer). The numerical simulation model is comprised of nanotube arrays on a transparent conducting glass substrate under front-side illumination. In the FDTD analysis, a transverse electromagnetic (TEM) wave is incident onto a N719 dye-coated nanotube array initially passing through the barrier layer; light that emerges from the nanotubes is reflected by a perfectly conducting layer (perfect electric conductor—PEC) boundary that simulates the effect of the DSC platinum counter electrode. An observation plane placed between the electromagnetic source and DSC detects the intensity of both the incident wave and the wave returning back from the DSC structure. The absorbance and transmittance spectra are determined in the wavelength range 300–700 nm as a function of nanotube-array dimensions including length, pore size, barrier layer thickness, and surface roughness while keeping the wall thickness constant at 12 nm. The validity of the computational simulations is experimentally verified. A significant increase in the light absorption by the dye-coated nanotubes was observed for increasing nanotube length; smaller pore sizes, and increased surface roughness. Changes in the barrier layer thickness had a negligible effect on the absorbance spectrum. Our efforts demonstrate FDTD to be a broadly applicable technique capable of guiding design of an optimal DSC architecture.  相似文献   
107.
108.
Digital watermarking techniques have been proposed as a solution to the problem of copyright protection of multimedia data. In this paper, we propose a novel Chinese remainder theorem (CRT)-based technique for digital watermarking. The use of CRT for this purpose provides additional security along with resistance to some familiar attacks. We have shown that this technique is quite resilient to addition of the noise. We have compared performance of the proposed technique with recently reported two singular value decomposition (SVD)-based watermarking techniques and shown its superior performance in terms of tampering assessment function (TAF), computational efficiency and peak signal to noise ratio (PSNR). For example, the embedding time of the proposed CRT-based scheme is 6 and 3 times faster than the SVD-based Schemes 1 and 2, respectively. This technique can also be applied to document, audio and video contents.  相似文献   
109.
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Currently, no targeted treatment is available for TNBC, and the most common clinical therapy is tumor resection, which often promotes metastasis risks. Strong evidence suggests that the lymphatic metastasis is mediated by the C‐C chemokine receptor type 7 (CCR7)/C‐C motif chemokine ligand 21 crosstalk between tumor cells and the lymphatic system. It is hypothesized that CCR7 is a key immune modulator in the tumor microenvironment and the local blockade of CCR7 could effectively inhibit TNBC lymphatic metastasis. Accordingly, a plasmid encoding an antagonistic CCR7 affinity protein‐CCR7 trap is delivered by tumor targeting nanoparticles in a highly metastatic 4T1 TNBC mouse model. Results show that CCR7 traps are transiently expressed, locally disrupt the signaling pathways in the tumor site, and efficiently inhibit TNBC lymphatic metastasis, without inducing immunosuppression as observed in systemic therapies using CCR7 monoclonal antibody. Significantly, upon applying CCR7 trap therapy prior to tumor resection, a 4T1 TNBC mouse model shows good prognosis without any further metastasis and relapse. In addition, CCR7 trap therapy efficiently inhibits the lymphatic metastasis in a B16F10 melanoma mouse model, indicating its great potential for various metastatic diseases treatment.  相似文献   
110.
Atomically thin materials such as graphene are uniquely responsive to charge transfer from adjacent materials, making them ideal charge‐transport layers in phototransistor devices. Effective implementation of organic semiconductors as a photoactive layer would open up a multitude of applications in biomimetic circuitry and ultra‐broadband imaging but polycrystalline and amorphous thin films have shown inferior performance compared to inorganic semiconductors. Here, the long‐range order in rubrene single crystals is utilized to engineer organic‐semiconductor–graphene phototransistors surpassing previously reported photogating efficiencies by one order of magnitude. Phototransistors based upon these interfaces are spectrally selective to visible wavelengths and, through photoconductive gain mechanisms, achieve responsivity as large as 107 A W?1 and a detectivity of 9 × 1011 Jones at room temperature. These findings point toward implementing low‐cost, flexible materials for amplified imaging at ultralow light levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号