首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9583篇
  免费   636篇
  国内免费   310篇
电工技术   388篇
综合类   378篇
化学工业   1711篇
金属工艺   438篇
机械仪表   430篇
建筑科学   629篇
矿业工程   161篇
能源动力   318篇
轻工业   568篇
水利工程   116篇
石油天然气   289篇
武器工业   34篇
无线电   1564篇
一般工业技术   1399篇
冶金工业   744篇
原子能技术   80篇
自动化技术   1282篇
  2024年   25篇
  2023年   127篇
  2022年   233篇
  2021年   324篇
  2020年   199篇
  2019年   201篇
  2018年   265篇
  2017年   264篇
  2016年   274篇
  2015年   264篇
  2014年   400篇
  2013年   580篇
  2012年   509篇
  2011年   655篇
  2010年   569篇
  2009年   540篇
  2008年   590篇
  2007年   469篇
  2006年   481篇
  2005年   351篇
  2004年   306篇
  2003年   315篇
  2002年   283篇
  2001年   233篇
  2000年   228篇
  1999年   232篇
  1998年   300篇
  1997年   228篇
  1996年   217篇
  1995年   163篇
  1994年   138篇
  1993年   108篇
  1992年   71篇
  1991年   58篇
  1990年   51篇
  1989年   42篇
  1988年   33篇
  1987年   30篇
  1986年   27篇
  1985年   16篇
  1984年   10篇
  1983年   9篇
  1981年   11篇
  1980年   15篇
  1979年   13篇
  1978年   8篇
  1977年   8篇
  1976年   15篇
  1975年   9篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
91.
Lai G  Yatagai T 《Applied optics》1994,33(25):5935-5940
The Fourier transform method is applied to analyze the initial phase of linear and equispaced Fizeau fringes. We develop an algorithm for high-precision phase measurement by using the Fourier coefficient that corresponds to the spatial frequency of the Fizeau fringes, and we describe methods for determining the fringe carrier frequency. Errors caused by carrier frequency fluctuation and data truncation are studied theoretically and by computer simulation. To demonstrate the method we apply it to the real-time calibration of a piezoelectric transducer mirror in a Twyman-Green interferometer.  相似文献   
92.
The reaction between silicon carbide and aluminium to form silicon and Al4C3 in SiC particle-reinforced aluminium fabricated by liquid aluminium infiltration was most severe near the original interface between liquid aluminium and the SiC preform. This resulted in the highest concentration of Al4C3 and the lowest concentrations of silicon and SiC in the part of the composite near this interface. In particular, the silicon concentration was highest in the bottom centre of the composite when infiltration occurred from the top, because silicon diffused toward the surrounding aluminium melt before solidification. These non-uniform phase distributions, as measured by X-ray diffraction and differential scanning calorimetry, did not cause any non-uniform shear strength distribution. However, excessive reaction between SiC and aluminium, as observed for an infiltration (=mould=liquid metal) temperature of 780° C, caused the tensile strength to decrease. In the case where a steel mould was used during infiltration at 780° C, iron-containing precipitates, such as ternary Al-Fe-Si, were observed in the part of the composite within 5 mm from the above-mentioned interface; their formation was related to the silicon out-diffusion in the form of liquid Al-Si; they caused the shear strength to be lower in this part of the composite; larger such precipitates (up to 100 m) were observed in the excess aluminium adjacent to the cast composite. For pure aluminium as the infiltrating metal, the optimum infiltration temperature for the highest tensile strength was 700° C. An infiltration temperature of 670° C resulted in incomplete infiltration, which was more severe when a steel mould rather than a graphite mould was used because of the higher thermal conductivity of the former.  相似文献   
93.
RADIOIMMUNOTOXICOLOGICALEFFECTOFENRICHEDURANIUMONCENTRALANDPERIPHERALIMMUNECELLSANDTHEPROTECTIVEACTIONOFIL-1ANDIL-2¥ZhuShoupe...  相似文献   
94.
Inspired by mussel‐adhesion phenomena in nature, polydopamine (PDA) coatings are a promising route to multifunctional platforms for decorating various materials. The typical self‐polymerization process of dopamine is time‐consuming and the coatings of PDA are not reusable. Herein, a reusable and time‐saving strategy for the electrochemical polymerization of dopamine (EPD) is reported. The PDA layer is deposited on vertically aligned TiO2 nanotube arrays (NTAs). Owing to the abundant catechol and amine groups in the PDA layer, uniform Pt nanoparticles (NPs) are deposited onto the TiO2 NTAs and can effectively prevent the recombination of electron–hole pairs generated from photo‐electrocatalysis and transfer the captured electrons to participate in the photo‐electrocatalytic reaction process. Compared with pristine TiO2 NTAs, the as‐prepared Pt@TiO2 NTA composites exhibit surface‐enhanced Raman scattering sensitivity for detecting rhodamine 6G and display excellent UV‐assisted self‐cleaning ability, and also show promise as a nonenzymatic glucose biosensor. Furthermore, the mussel‐inspired electropolymerization strategy and the fast EPD‐reduced nanoparticle decorating process presented herein can be readily extended to various functional substrates, such as conductive glass, metallic oxides, and semiconductors. It is the adaptation of the established PDA system for a selective, robust, and generalizable sensing system that is the emphasis of this work.  相似文献   
95.
The instability of few‐layer black phosphorus (FL‐BP) hampers its further applications. Here, it can be demonstrated that the instability of FL‐BP can also be the advantage for application in biosensor. First, gold nanoparticle/FL‐BP (BP‐Au) hybrid is facilely synthesized by mixing Au precursor with FL‐BP. BP‐Au shows outstanding catalytic activity (K = 1120 s?1 g?1) and low activation energy (17.53 kJ mol?1) for reducing 4‐nitrophenol, which is attributed to the electron‐reservoir and electron‐donor properties of FL‐BP, and synergistic interaction of Au nanoparticles and FL‐BP. Oxidation of FL‐BP after catalytic reaction is further confirmed by transmission electron microscope, X‐ray photoelectron spectroscopy, and zeta potentials. Second, the catalytic activity of BP‐Au can be reversibly switched from “inactive” to “active” upon treatment with antibody and antigen in solution, thus providing a versatile platform for label‐free colorimetric detection of biomarkers. The sensor shows a wide detection range (1 pg mL?1 to –10 µg mL?1), high sensitivity (0.20 pg mL?1), and selectivity for detecting carcinoembryonic antigen (CEA). Finally, the biosensor has been used to detect CEA in colon and breast cancer clinical samples with satisfactory results. Therefore, the instability of BP can also be the advantage for application in detecting cancer biomarker in clinic.  相似文献   
96.
Pinch analysis was initially developed as a methodology for optimizing energy efficiency in process plants. Applications of pinch analysis applications are based on common principles of using stream quantity and quality to determine optimal system targets. This initial targeting step identifies the pinch point, which then allows complex problems to be decomposed for the subsequent design of an optimal network using insights drawn from the targeting stage. One important class of pinch analysis problems is energy planning with footprint constraints, which began with the development of carbon emissions pinch analysis; in such problems, energy sources and demands are characterized by carbon footprint as the quality index. This methodology has been extended by using alternative quality indexes that measure different sustainability dimensions, such as water footprint, land footprint, emergy transformity, inoperability risk, energy return on investment and human fatalities. Pinch analysis variants still have the limitation of being able to use one quality index at a time, while previous attempts to develop pinch analysis methods using multiple indices have only been partially successful for special cases. In this work, a multiple-index pinch analysis method is developed by using an aggregate quality index, based on a weighted linear function of different quality indexes normally used in energy planning. The weights used to compute the aggregate index are determined via the analytic hierarchy process. A case study for Indian power sector is solved to illustrate how this approach allows multiple sustainability dimensions to be accounted for in energy planning.  相似文献   
97.
Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt‐based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well‐defined structure and surface are further highlighted. Furthermore, ultrathin Pt‐based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field.  相似文献   
98.
99.
100.
The microstructure and mechanical properties of Sn–xBi (x = 10, 20, 25, and 35) solder alloy were investigated by scanning electronic microscope and notch tensile test. The results showed that the microstructure of Sn–10Bi and Sn–20Bi solder alloy was constituted by Bi particle and β-Sn phase. The microstructure of Sn–25Bi and Sn–35Bi solder alloy was consisted of eutectic phase and primary phase. The ultimate tensile load of Sn–20Bi solder alloy was higher than that of Sn–10Bi in notch tensile test. The ultimate tensile load of Sn–25Bi and Sn–35Bi was declined gradually compared with that of Sn–20Bi solder alloy. The fracture energy of Sn–xBi was decreased continuously when the Bi fraction increased. Crack observation, fracture surface observation, and finite element analysis revealed that the crack initiation and propagation of Sn–25Bi and Sn–35Bi was dominated by the fracture of brittle eutectic phase. Therefore, the ultimate tensile load and fracture energy of Sn–25Bi and Sn–35Bi were damaged compared with that of Sn–20Bi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号