首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   14篇
电工技术   3篇
化学工业   102篇
机械仪表   3篇
能源动力   5篇
轻工业   97篇
水利工程   1篇
无线电   11篇
一般工业技术   34篇
冶金工业   63篇
自动化技术   31篇
  2023年   1篇
  2021年   6篇
  2020年   3篇
  2019年   7篇
  2018年   11篇
  2017年   19篇
  2016年   8篇
  2015年   3篇
  2014年   9篇
  2013年   12篇
  2012年   23篇
  2011年   20篇
  2010年   11篇
  2009年   6篇
  2008年   12篇
  2007年   11篇
  2006年   12篇
  2005年   8篇
  2004年   9篇
  2003年   10篇
  2002年   10篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   24篇
  1997年   8篇
  1996年   10篇
  1995年   9篇
  1994年   14篇
  1993年   6篇
  1992年   7篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1980年   4篇
  1977年   1篇
  1976年   8篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   3篇
排序方式: 共有350条查询结果,搜索用时 15 毫秒
271.
The benzimidazole containing ligand 1,3-bis(benzimidazol-2-yl)propylamine (bbpaH) was anchored onto poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) (GMT) and onto the thiirane analogue of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (GME-S). Abbreviations of the modified polymers are GMT-bbpaH and GME-S-bbpaH. A multistep synthesis was applied in an attempt to increase the ligand concentration on the polymer GMT, This resulted in the resin GMT-bbpaH(ind) of which the solid state CP MAS 13C-NMR data showed that in this case only a monobenzimidazole was formed, i.e. only the 3-benzimidazole group was formed.Batch extraction capacities were determined for the chloride salts of Cu2+, Ni2+, Co2+, Cd2+, Zn2+ and Ca2+ in the pH range 0.9–6.0 in buffered solutions at room temperature. All three resins show a high selectivity for Cu2+ under competitive conditions, with maximum ligand occupations of 54%, 64% and 27% for GMT-bbpaH, GME-S-bbpaH and GMT-bbpaH(ind), respectively. The resin GMT-bbpaH also takes up some Zn2+ ions at pH > 4.5, the maximum ligand occupation being 17%. The resin GME-S-bbpaH shows some affinity for Zn2+ and Cd2+ ions in this pH range, with ligand occupations of 17% and 7%, respectively. Only GMT-bbpaH(ind) shows complete selectivity for Cu(II) at pH > 3, although the maximum Cu2+-uptake capacity is rather low.Kinetic experiments showed that the oxirane derivative exhibits a faster uptake kinetics compared with the thiirane analogue. Incomplete stripping of the Cu(II)-loaded ion-exchange resins and loss of Cu(II)-uptake capacity was observed during the regeneration experiments.  相似文献   
272.
Sixty-four male Holstein-Friesian × Dutch Friesian veal calves (46 ± 3.0 kg) were used to evaluate the effect of the inclusion of different levels and sources of dietary roughage on animal performance and rumen development. Treatments consisted of 1) C100 = concentrate only; 2) C70-S30 = concentrate (70%) with straw (30%), 3) C70-G30 = concentrate (70%) with dried grass (30%), 4) C70-G15-S15 = concentrate (70%) with dried grass (15%) and straw (15%), 5) C70-CS30 = concentrate (70%) with corn silage (30%), 6) C40-CS60 = concentrate (40%) with corn silage (60%), 7) C70-CS30-AL = concentrate (70%) with corn silage (30%) ad libitum, 8) C70-G15-S15-AL = concentrate (70%) with dried grass (15%) and straw (15%) ad libitum. All dietary treatments were provided in addition to a commercial milk replacer. Concentrate was provided as pellets and roughage was chopped. The dietary treatments 1 to 6 were supplied restrictedly to a maximum of 750 g of dry matter (DM) per day, whereas treatments 7 and 8 were offered ad libitum in combination with a reduced amount of milk replacer. Calves were euthanized after 10 wk. Straw supplementation (C70-S30 vs. C70-G30 and C70-CS30) reduced DM intake, and ad libitum supply of concentrate and roughage increased DM intake. Roughage addition did not affect growth performance. Rumen fermentation was characterized by low pH and high total volatile fatty acids and reducing sugar concentrations. Calves fed ad libitum showed lower ruminal lactate concentrations than calves fed restrictedly. Ammonia concentrations were highest in calves fed C-100 and lowest in calves fed ad libitum. The recovery of CoEDTA (added to milk replacer) varied between 20.5 and 34.9%, indicating that significant amounts of milk entered the rumen. Roughage addition decreased the incidence of plaque formation (rumen mucosa containing focal or multifocal patches with coalescing and adhering papillae covered by a sticky mass of feed, hair and cell debris) and the incidence of calves with poorly developed rumen mucosa. However, morphometric parameters of the rumen wall were hardly influenced by the type and level of roughage. Ruminal polysaccharide-degrading enzyme activities reflected the adaptation of the microorganisms to the dietary concentrate and roughage source. Results indicated that in veal calves, the addition of roughage to concentrate diets did not affect growth performance and positively influenced the macroscopic appearance of the rumen wall.  相似文献   
273.
The objective of this experiment was to evaluate the effect of feeding total mixed rations (TMR) that differ in structural and nonstructural carbohydrates to dairy cows in early and late lactation on short-term feed intake, dry matter intake (DMI), rumen fermentation variables, and milk yield. A 5 × 5 Latin square experiment with 15 dairy cows was repeated during early and late lactation. The 5 treatments were a TMR with (all on dry matter basis) 55% roughage (a 50:50 mixture of corn silage and grass silage) and 45% concentrate (a 50:50 mixture of concentrate rich in structural carbohydrates and concentrate rich in nonstructural carbohydrates; treatment CON), a TMR with the concentrate mixture and 55% grass silage (RGS) or 55% corn silage (RCS), and a TMR with the roughage mixture and 45% of the concentrate rich in structural carbohydrates (CSC) or the concentrate rich in nonstructural carbohydrates (CNS). Meal criteria, determined using the Gaussian-Gaussian-Weibull method per animal per treatment, showed an interaction between lactation stage and treatment. Feed intake behavior variables were therefore calculated with meal criteria per treatment-lactation stage combination. Differences in feed intake behavior were more pronounced between treatments differing in roughage composition than between treatments differing in concentrate composition, probably related to larger differences in chemical composition and particle size between corn silage and grass silage than between the 2 concentrates. The number of meals was similar between treatments, but eating time was greater in RGS (227 min/d) and lesser in RCS (177 min/d) than the other treatments. Intake rate increased when the amount of grass silage decreased, whereas meal duration decreased simultaneously. These effects were in line with a decreased DMI of the RGS diet vs. the other treatments, probably related to the high neutral detergent fiber (NDF) content. However, this effect was not found in CSC, although NDF content of the TMR, fractional clearance rate of NDF, and fractional degradation rate of NDF was similar between CSC and RGS. Rumen fluid pH was lesser, and molar proportions of acetic acid and of propionic acid were lesser and greater, respectively, in RCS compared with all other diets. Milk production did not differ between treatments. There was no effect of type of concentrate on milk composition, but diet RCS resulted in a lesser milk fat content and greater milk protein content than diet RGS. Lactation stage did affect short-term feed intake behavior and DMI, although different grass silages were fed during early and late lactation. The results indicate that short-term feed intake behavior is related to DMI and therefore may be a helpful tool in optimizing DMI and milk production in high-production dairy cows.  相似文献   
274.
Two experiments with rumen-fistulated dairy cows were conducted to evaluate the effects of feeding docosahexaenoic acid (DHA; C22:6 n-3)-enriched diets or diets provoking a decreased rumen pH on milk fatty acid composition. In the first experiment, dietary treatments were tested during 21-d experimental periods in a 4 × 4 Latin square design. Diets included a control diet, a starch-rich diet, a bicarbonate-buffered starch-rich diet, and a diet supplemented with DHA-enriched micro algae [Schizochytrium sp., 43.0 g/kg of dry matter intake (DMI)]. Algae were supplemented directly through the rumen fistula. The total mixed ration consisted of grass silage, corn silage, soybean meal, and a standard or glucogenic concentrate. The glucogenic and buffered glucogenic diet had no effect on rumen fermentation and milk fatty acid composition because, unexpectedly, no reduced rumen pH was detected. The algae diet had no effect on rumen pH but provoked decreased butyrate and increased isovalerate molar proportions in the rumen. In addition, algae supplementation affected rumen biohydrogenation of linoleic and linolenic acid as reflected in the modified milk fatty acid composition toward increased conjugated linoleic acid (CLA) cis-9 trans-11, CLA trans-9 cis-11, C18:1 trans-10, C18:1 trans-11, and C22:6 n-3 concentrations. Concomitantly, on average, a 45% decrease in DMI and milk yield was observed. Based on these drastic and impractical results, a second animal experiment was performed for 20 d in which 9.35 g/kg of total DMI of algae were incorporated in the concentrate and supplemented to 3 rumen-fistulated cows. Algae concentrate feeding increased rumen pH, which was associated with decreased rumen short-chain fatty acid concentrations. Moreover, a different shift in rumen short-chain fatty acid proportions was observed compared with the first experiment because molar proportions of butyrate, isobutyrate, and isovalerate increased, whereas acetate molar proportion decreased. The milk fatty acid profile changed as in experiment 1. However, the decrease in DMI and milk yield was less pronounced (on average 10%) at this algae supplementation level, whereas milk fat percentage decreased from 47.9 to 22.0 g/kg of milk after algae treatment. In conclusion, an algae supplementation level of about 10 g/kg of DMI proved effective to reduce the milk fat content and to modify the milk fatty acid composition toward increased CLA cis-9 trans-11, C18:1 trans, and DHA concentrations.  相似文献   
275.
The current study investigated the relationship between in vitro and in vivo CH4 production by cows fed corn silage (CS)-based rations. In vivo CH4 production was measured in climate respiration chambers using 8 rumen-cannulated Holstein-Friesian cows. In vitro CH4 production was measured using rumen fluid from the 8 cows that were fully adapted to their respective experimental rations. The animals were grouped in 2 blocks, and randomly assigned to 1 of the 4 total mixed rations (TMR) that consisted of 75% experimental CS, 20% concentrate, and 5% wheat straw [dry matter (DM) basis]. The experimental CS were prepared from whole-plant corn that was harvested at either a very early (25% DM), early (28% DM), medium (32% DM), or late (40% DM) stage of maturity. The 4 experimental TMR and the corresponding CS served as substrate in 2 separate in vitro runs (each run representing 1 block of 4 animals) using rumen fluid from cows fed the TMR in question. No relationship was found between in vivo CH4 production and in vitro CH4 production measured at various time points between 2 and 48 h. None of the in vitro gas production (GP) and CH4 production parameters was influenced by an interaction between substrate and origin of rumen fluid. In vitro measured 48-h GP was not affected by the maturity of whole-plant corn, irrespective whether CS alone or as part of TMR was incubated in adapted rumen inoculum. Incubation of the experimental TMR did not affect the kinetics parameters associated with gas or CH4 production, but when CS alone was incubated the asymptote of GP of the soluble fraction was slightly decreased with increasing maturity of CS at harvest. In vitro CH4 production expressed as a percent of total gas was not affected by the maturity of whole-plant corn at harvest. Several in vitro parameters were significantly affected (GP) or tended to be affected (CH4) by diet fed to donor cows. It was concluded that the current in vitro technique is not suitable to predict in vivo CH4 production from CS-based rations.  相似文献   
276.
277.
Fractional passage rates are required to predict nutrient absorption in ruminants but data on nutrient-specific passage kinetics are largely lacking. With the use of the stable isotope ratio (δ) as an internal marker, we assessed passage kinetics of fiber and fiber-bound nitrogen (N) of intrinsically labeled grass silage from fecal and omasal excretion patterns of δ13C and δ15N. In a 6 × 6 Latin square, lactating dairy cows received grass silages [455 g/kg of total diet dry matter (DM) ] in a 2 × 3 factorial arrangement from ryegrass swards fertilized at low (45 kg of N/ha) or high (90 kg of N/ha) levels of N and harvested at 3 maturity stages. Feed intake (16.7 ± 0.48 kg of DM/d; mean ± standard error of the mean) and milk yield (26.7 ± 0.92 kg/d) increased at the high level of N fertilization and at decreasing maturity. Nutrient digestibility decreased with increasing plant maturity, particularly at the high level of N fertilization, essentially reflecting dietary treatment effects on the nutritional composition of the grass silage. Fractional rumen passage rates (K1) were highest and total mean retention time in the gastrointestinal tract (TMRT) was lowest when based on the external marker chromium mordanted fiber (Cr-NDF; 0.047/h and 38.0 h, respectively). Fecal δ13C in the acid detergent fiber fraction (13CADF) provided the lowest K1 (0.023/h) and the highest TMRT (61.1 h) and highest peak concentration time (PCT; 24.3 h) among markers. In comparison, fecal fiber-bound N (15NADF) had a considerably higher K1 (0.032/h) and lower TMRT (46.4 h) than 13CADF. Total N (measured with 15NDM) had a comparable K1 (0.034/h) to that of 15NADF but provided the highest fractional passage rates from the proximal colon-cecum (K2; 0.37/h) and lowest PCT (17.4 h) among markers. A literature review indicated unclear effects of grass silage maturity on K1 and unknown effects of N fertilization on K1. Our study indicated no effect of advancing maturity on fecal K1 and a trend for K1 to increase with the high level of N fertilization. Parameter K2 increased, whereas PCT and TMRT generally decreased with the high level of N fertilization. Omasal digesta sampling largely confirmed results based on fecal sampling. Results indicate that the use of δ13C and δ15N can describe fiber-specific passage kinetics of forage.  相似文献   
278.
3-Nitrooxypropanol (NOP) is a promising methane (CH4) inhibitor. Recent studies have shown major reductions in CH4 emissions from beef and dairy cattle when using NOP but with large variation in response. The objective of this study was to quantitatively evaluate the factors that explain heterogeneity in response to NOP using meta-analytical approaches. Data from 11 experiments and 38 treatment means were used. Factors considered were cattle type (dairy or beef), measurement technique (GreenFeed technique, C-Lock Inc., Rapid City, SD; sulfur hexafluoride tracer technique; and respiration chamber technique), dry matter (DM) intake, body weight, NOP dose, roughage proportion, dietary crude protein content, and dietary neutral detergent fiber (NDF) content. The mean difference (MD) in CH4 production (g/d) and CH4 yield (g/kg of DM intake) was calculated by subtracting the mean of CH4 emission for the control group from that of the NOP-supplemented group. Forest plots of standardized MD indicated variable effect sizes of NOP across studies. Compared with beef cattle, dairy cattle had a much larger feed intake (22.3 ± 4.13 vs. 7.3 ± 0.97 kg of DM/d; mean ± standard deviation) and CH4 production (351 ± 94.1 vs. 124 ± 44.8 g/d). Therefore, in further analyses across dairy and beef cattle studies, MD was expressed as a proportion (%) of observed control mean. The final mixed-effect model for relative MD in CH4 production included cattle type, NOP dose, and NDF content. When adjusted for NOP dose and NDF content, the CH4-mitigating effect of NOP was less in beef cattle (?22.2 ± 3.33%) than in dairy cattle (?39.0 ± 5.40%). An increase of 10 mg/kg of DM in NOP dose from its mean (123 mg/kg of DM) enhanced the NOP effect on CH4 production decline by 2.56 ± 0.550%. However, a greater dietary NDF content impaired the NOP effect on CH4 production by 1.64 ± 0.330% per 10 g/kg DM increase in NDF content from its mean (331 g of NDF/kg of DM). The factors included in the final mixed-effect model for CH4 yield were ?17.1 ± 4.23% (beef cattle) and ?38.8 ± 5.49% (dairy cattle), ?2.48 ± 0.734% per 10 mg/kg DM increase in NOP dose from its mean, and 1.52 ± 0.406% per 10 g/kg DM increase in NDF content from its mean. In conclusion, the present meta-analysis indicates that a greater NOP dose enhances the NOP effect on CH4 emission, whereas an increased dietary fiber content decreases its effect. 3-Nitrooxypropanol has stronger antimethanogenic effects in dairy cattle than in beef cattle.  相似文献   
279.
This study aimed to quantify the relationship between CH4 emission and fatty acids, volatile metabolites, and nonvolatile metabolites in milk of dairy cows fed forage-based diets. Data from 6 studies were used, including 27 dietary treatments and 123 individual observations from lactating Holstein-Friesian cows. These dietary treatments covered a large range of forage-based diets, with different qualities and proportions of grass silage and corn silage. Methane emission was measured in climate respiration chambers and expressed as production (g per day), yield (g per kg of dry matter intake; DMI), and intensity (g per kg of fat- and protein-corrected milk; FPCM). Milk samples were analyzed for fatty acids by gas chromatography, for volatile metabolites by gas chromatography-mass spectrometry, and for nonvolatile metabolites by nuclear magnetic resonance. Dry matter intake was 15.9 ± 1.90 kg/d (mean ± SD), FPCM yield was 25.2 ± 4.57 kg/d, CH4 production was 359 ± 51.1 g/d, CH4 yield was 22.6 ± 2.31 g/kg of DMI, and CH4 intensity was 14.5 ± 2.59 g/kg of FPCM. The results show that changes in individual milk metabolite concentrations can be related to the ruminal CH4 production pathways. Several of these relationships were diet driven, whereas some were partly dependent on FPCM yield. Next, prediction models were developed and subsequently evaluated based on root mean square error of prediction (RMSEP), concordance correlation coefficient (CCC) analysis, and random 10-fold cross-validation. The best models with milk fatty acids (in g/100 g of fatty acids; MFA) alone predicted CH4 production, yield, and intensity with a RMSEP of 34 g/d, 2.0 g/kg of DMI, and 1.7 g/kg of FPCM, and with a CCC of 0.67, 0.44, and 0.75, respectively. The CH4 prediction potential of both volatile metabolites alone and nonvolatile metabolites alone was low, regardless of the unit of CH4 emission, as evidenced by the low CCC values (<0.35). The best models combining the 3 types of metabolites as selection variables resulted in the inclusion of only MFA for CH4 production and CH4 yield. For CH4 intensity, MFA, volatile metabolites, and nonvolatile metabolites were included in the prediction model. This resulted in a small improvement in prediction potential (CCC of 0.80; RMSEP of 1.5 g/kg of FPCM) relative to MFA alone. These results indicate that volatile and nonvolatile metabolites in milk contain some information to increase our understanding of enteric CH4 production of dairy cows, but that it is not worthwhile to determine the volatile and nonvolatile metabolites in milk to estimate CH4 emission of dairy cows. We conclude that MFA have moderate potential to predict CH4 emission of dairy cattle fed forage-based diets, and that the models can aid in the effort to understand and mitigate CH4 emissions of dairy cows.  相似文献   
280.
The objective of the present study was to compare the prediction potential of milk Fourier-transform infrared spectroscopy (FTIR) for CH4 emissions of dairy cows with that of gas chromatography (GC)–based milk fatty acids (MFA). Data from 9 experiments with lactating Holstein-Friesian cows, with a total of 30 dietary treatments and 218 observations, were used. Methane emissions were measured for 3 consecutive days in climate respiration chambers and expressed as production (g/d), yield (g/kg of dry matter intake; DMI), and intensity (g/kg of fat- and protein-corrected milk; FPCM). Dry matter intake was 16.3 ± 2.18 kg/d (mean ± standard deviation), FPCM yield was 25.9 ± 5.06 kg/d, CH4 production was 366 ± 53.9 g/d, CH4 yield was 22.5 ± 2.10 g/kg of DMI, and CH4 intensity was 14.4 ± 2.58 g/kg of FPCM. Milk was sampled during the same days and analyzed by GC and by FTIR. Multivariate GC-determined MFA–based and FTIR-based CH4 prediction models were developed, and subsequently, the final CH4 prediction models were evaluated with root mean squared error of prediction and concordance correlation coefficient analysis. Further, we performed a random 10-fold cross validation to calculate the performance parameters of the models (e.g., the coefficient of determination of cross validation). The final GC-determined MFA–based CH4 prediction models estimate CH4 production, yield, and intensity with a root mean squared error of prediction of 35.7 g/d, 1.6 g/kg of DMI, and 1.6 g/kg of FPCM and with a concordance correlation coefficient of 0.72, 0.59, and 0.77, respectively. The final FTIR-based CH4 prediction models estimate CH4 production, yield, and intensity with a root mean squared error of prediction of 43.2 g/d, 1.9 g/kg of DMI, and 1.7 g/kg of FPCM and with a concordance correlation coefficient of 0.52, 0.40, and 0.72, respectively. The GC-determined MFA–based prediction models described a greater part of the observed variation in CH4 emission than did the FTIR-based models. The cross validation results indicate that all CH4 prediction models (both GC-determined MFA–based and FTIR-based models) are robust; the difference between the coefficient of determination and the coefficient of determination of cross validation ranged from 0.01 to 0.07. The results indicate that GC-determined MFA have a greater potential than FTIR spectra to estimate CH4 production, yield, and intensity. Both techniques hold potential but may not yet be ready to predict CH4 emission of dairy cows in practice. Additional CH4 measurements are needed to improve the accuracy and robustness of GC-determined MFA and FTIR spectra for CH4 prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号