首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   14篇
电工技术   3篇
化学工业   104篇
机械仪表   3篇
能源动力   5篇
轻工业   97篇
水利工程   1篇
无线电   11篇
一般工业技术   34篇
冶金工业   63篇
自动化技术   31篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   7篇
  2018年   11篇
  2017年   19篇
  2016年   8篇
  2015年   3篇
  2014年   9篇
  2013年   12篇
  2012年   23篇
  2011年   20篇
  2010年   11篇
  2009年   6篇
  2008年   12篇
  2007年   11篇
  2006年   12篇
  2005年   8篇
  2004年   9篇
  2003年   10篇
  2002年   10篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   24篇
  1997年   8篇
  1996年   10篇
  1995年   9篇
  1994年   14篇
  1993年   6篇
  1992年   7篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1980年   4篇
  1977年   1篇
  1976年   8篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   3篇
排序方式: 共有352条查询结果,搜索用时 15 毫秒
281.
The objective of this experiment was to evaluate the effect of feeding total mixed rations (TMR) that differ in structural and nonstructural carbohydrates to dairy cows in early and late lactation on short-term feed intake, dry matter intake (DMI), rumen fermentation variables, and milk yield. A 5 × 5 Latin square experiment with 15 dairy cows was repeated during early and late lactation. The 5 treatments were a TMR with (all on dry matter basis) 55% roughage (a 50:50 mixture of corn silage and grass silage) and 45% concentrate (a 50:50 mixture of concentrate rich in structural carbohydrates and concentrate rich in nonstructural carbohydrates; treatment CON), a TMR with the concentrate mixture and 55% grass silage (RGS) or 55% corn silage (RCS), and a TMR with the roughage mixture and 45% of the concentrate rich in structural carbohydrates (CSC) or the concentrate rich in nonstructural carbohydrates (CNS). Meal criteria, determined using the Gaussian-Gaussian-Weibull method per animal per treatment, showed an interaction between lactation stage and treatment. Feed intake behavior variables were therefore calculated with meal criteria per treatment-lactation stage combination. Differences in feed intake behavior were more pronounced between treatments differing in roughage composition than between treatments differing in concentrate composition, probably related to larger differences in chemical composition and particle size between corn silage and grass silage than between the 2 concentrates. The number of meals was similar between treatments, but eating time was greater in RGS (227 min/d) and lesser in RCS (177 min/d) than the other treatments. Intake rate increased when the amount of grass silage decreased, whereas meal duration decreased simultaneously. These effects were in line with a decreased DMI of the RGS diet vs. the other treatments, probably related to the high neutral detergent fiber (NDF) content. However, this effect was not found in CSC, although NDF content of the TMR, fractional clearance rate of NDF, and fractional degradation rate of NDF was similar between CSC and RGS. Rumen fluid pH was lesser, and molar proportions of acetic acid and of propionic acid were lesser and greater, respectively, in RCS compared with all other diets. Milk production did not differ between treatments. There was no effect of type of concentrate on milk composition, but diet RCS resulted in a lesser milk fat content and greater milk protein content than diet RGS. Lactation stage did affect short-term feed intake behavior and DMI, although different grass silages were fed during early and late lactation. The results indicate that short-term feed intake behavior is related to DMI and therefore may be a helpful tool in optimizing DMI and milk production in high-production dairy cows.  相似文献   
282.
Two experiments with rumen-fistulated dairy cows were conducted to evaluate the effects of feeding docosahexaenoic acid (DHA; C22:6 n-3)-enriched diets or diets provoking a decreased rumen pH on milk fatty acid composition. In the first experiment, dietary treatments were tested during 21-d experimental periods in a 4 × 4 Latin square design. Diets included a control diet, a starch-rich diet, a bicarbonate-buffered starch-rich diet, and a diet supplemented with DHA-enriched micro algae [Schizochytrium sp., 43.0 g/kg of dry matter intake (DMI)]. Algae were supplemented directly through the rumen fistula. The total mixed ration consisted of grass silage, corn silage, soybean meal, and a standard or glucogenic concentrate. The glucogenic and buffered glucogenic diet had no effect on rumen fermentation and milk fatty acid composition because, unexpectedly, no reduced rumen pH was detected. The algae diet had no effect on rumen pH but provoked decreased butyrate and increased isovalerate molar proportions in the rumen. In addition, algae supplementation affected rumen biohydrogenation of linoleic and linolenic acid as reflected in the modified milk fatty acid composition toward increased conjugated linoleic acid (CLA) cis-9 trans-11, CLA trans-9 cis-11, C18:1 trans-10, C18:1 trans-11, and C22:6 n-3 concentrations. Concomitantly, on average, a 45% decrease in DMI and milk yield was observed. Based on these drastic and impractical results, a second animal experiment was performed for 20 d in which 9.35 g/kg of total DMI of algae were incorporated in the concentrate and supplemented to 3 rumen-fistulated cows. Algae concentrate feeding increased rumen pH, which was associated with decreased rumen short-chain fatty acid concentrations. Moreover, a different shift in rumen short-chain fatty acid proportions was observed compared with the first experiment because molar proportions of butyrate, isobutyrate, and isovalerate increased, whereas acetate molar proportion decreased. The milk fatty acid profile changed as in experiment 1. However, the decrease in DMI and milk yield was less pronounced (on average 10%) at this algae supplementation level, whereas milk fat percentage decreased from 47.9 to 22.0 g/kg of milk after algae treatment. In conclusion, an algae supplementation level of about 10 g/kg of DMI proved effective to reduce the milk fat content and to modify the milk fatty acid composition toward increased CLA cis-9 trans-11, C18:1 trans, and DHA concentrations.  相似文献   
283.
Crohn’s disease (CD) is a relapsing-remitting inflammatory disease of the gastrointestinal (GI) tract characterized by increased extracellular matrix (ECM) remodeling. The introduction of the α4β7-integrin inhibitor vedolizumab (VEDO) has improved disease management, although there is a high rate of primary non-response in patients with CD. We studied whether ECM biomarkers of neutrophil activity and mucosal damage could predict long-term response to VEDO in patients with CD. Serum levels of human neutrophil elastase (HNE)-derived fragments of calprotectin (CPa9-HNE), and matrix metalloproteinase (MMP)-derived fragments of type I (C1M), III (C3M), IV (C4M), and VI (C6Ma3) collagen, type III collagen formation (PRO-C3), basement membrane turnover (PRO-C4) and T-cell activity (C4G), were measured using protein fingerprint assays in patients with CD (n = 32) before VEDO therapy. Long-term response was defined as VEDO treatment of at least 12 months. CPa9-HNE was significantly increased at baseline in non-responders compared with responders (p < 0.05). C1M, C3M, C4M, C6Ma3, and PRO-C4 were also significantly increased at baseline in non-responders compared with responders (all p < 0.05). All biomarkers were associated with response to VEDO (all p < 0.05). To conclude, baseline levels of serum biomarkers for neutrophil activity and mucosal damage are linked to the pathology of CD, and are associated with long-term use of VEDO in patients with CD. Therefore, these biomarkers warrant further validation and could aid in therapeutic decision-making concerning vedolizumab therapy.  相似文献   
284.
The objective of this study was to evaluate the influence of different amounts of rumen-undegradable protein (RUP) on intake, N balance, performance, mammary gland development, carcass traits, and hormonal status of Holstein heifers at different physiological stages (PS). Sixteen prepubertal (PRE) heifers (initial BW = 106 ± 7.6 kg; age = 4.3 ± 0.46 mo) and 16 pubertal (PUB) heifers (initial BW = 224 ± 7.9 kg; age = 12.6 ± 0.45 mo) were used in an experiment over a period of 84 d. Four diets with increasing RUP contents (38, 44, 51, and 57% of dietary crude protein) and heifers at 2 PS (PRE or PUB) were used in a 4 × 2 factorial arrangement of treatments in a completely randomized design. Throughout the experiment, 2 digestibility trials were performed over 5 consecutive days (starting at d 36 and 78) involving feed and ort sampling and spot collections of feces and urine. At d 0 and 83, body ultrasound images were obtained for real-time carcass trait evaluation. The mammary gland was ultrasonically scanned at d 0 and every 3 wk during the experiment. Blood samples were taken at d 0 and 84 to determine serum concentrations of progesterone, estrogen, insulin-like growth factor I (IGF-I), and insulin. No interaction between PS and the level of RUP was found for any trait. Apparent digestibility of dry matter, organic matter, and neutral detergent fiber corrected for ash and protein was not affected by RUP level but was lower for PRE compared with PUB heifers. Sorting against neutral detergent fiber corrected for ash and protein (tendency only) and for crude protein was greater for PUB than PRE heifers. Pubertal heifers had greater average daily gain (905 vs. 505 g/d) and N retention (25.9 vs. 12.5 g/d) than PRE heifers. In addition, average daily gain and N retention were greatest at 51% RUP of dietary protein. Mammary ultrasonography indicated no effects of RUP amounts on mammary gland composition, whereas PRE heifers had greater pixel values than PUB, indicating higher contents of fat rather than protein in the mammary glands of PRE heifers. Serum progesterone and IGF-I concentration was affected only by PS, and PRE heifers had greater values of progesterone and IGF-I concentrations than PUB heifers. Serum insulin concentration was unaffected by PS but tended to be higher at 51% of RUP. In conclusion, an RUP level of 51% increases body weight, average daily gain, feed efficiency, and N retention in heifers regardless of the PS. In addition, PRE heifers have a lower sorting ability and reduced intake, total-tract digestibility, and N retention. They also have higher amounts of fat in their mammary glands, even at moderate growth rates.  相似文献   
285.
286.
By extending the response function approach developed in nonlinear optics, we analytically derive an expression for the non-Markovianity in the time evolution of a system in contact with a quantum mechanical bath, and find a close connection with the directly observable nonlinear optical response. The result indicates that memory in the bath-induced fluctuations rather than in the dissipation causes non-Markovianity. Initial correlations between states of the system and the bath are shown to be essential for a correct understanding of the non-Markovianity. These correlations are included in our treatment through a preparation function.  相似文献   
287.
288.
The objective was to quantify the energy and protein nutritional requirements of Holstein × Gyr crossbred preweaned dairy calves until 64 d of age. Thirty-nine Holstein × Gyr crossbred male calves with an average initial live weight (mean ± SEM; for all next values) of 36 ± 1.0 kg were used. Five calves were slaughtered at 4 d of life to estimate the animals' initial body composition (reference group). The remaining 34 calves were distributed in a completely randomized design in a 3 × 2 factorial arrangement consisting of 3 levels of milk (2, 4, or 8 L/d) and 2 levels of starter feed (presence or absence in diet). At 15 and 45 d of life, 4 animals from each treatment were subjected to digestibility trials with total collection of feces (for 72 h) and urine (for 24 h). At 64 d of age, all animals were slaughtered, their gastro-intestinal tract was washed to determine the empty body weight (EBW; kg), and their body tissues were sampled for subsequent analyses. The net energy requirement for maintenance was estimated using an exponential regression between metabolizable energy intake and heat production (both in Mcal/EBW0.75 per d) and was 74.3 ± 5.7 kcal/EBW0.75 per d, and was not affected by inclusion of starter feed in the diet. The metabolizable energy requirement for maintenance was determined at the point of zero energy retention in the body and was 105.2 ± 5.8 kcal/EBW0.75 per d. The net energy for gain was estimated using the EBW and the empty body gain (EBG; kg/d) as 0.0882 ± 0.0028 × EBW0.75 × EBG0.9050±0.0706. The metabolizable energy efficiency for gain (kg) of the milk was 57.4 ± 3.45%, and the kg of the starter feed was 39.3 ± 2.09%. The metabolizable protein requirement for maintenance was 3.52 ± 0.34 g/BW0.75 per d. The net protein required for each kilogram gained was estimated as 119.1 ± 32.9 × EBW0.0663±0.059. The metabolizable protein efficiency for gain was 77 ± 8.5% and was not affected by inclusion of starter feed in the diet. In conclusion, the energy efficiency for gain of milk is higher than that of starter and the net protein required per unit protein gain increases with empty body weight.  相似文献   
289.
Rumen microbes can adapt to feed additives, which may make the decrease in enteric CH4 production upon feeding an additive a transient response only. This study investigated alternate feeding of 2 CH4 mitigating feed additives with a different mode of action on persistency of lowering CH4 production compared with feeding a single additive over a period of 10 wk. Four pairs of cows were selected, and within pairs, cows were randomly assigned to either the control (AR-AR) or the alternating (AR-LA) concentrate treatment. The AR concentrate contained a blend of essential oils (Agolin Ruminant, Agolin SA, Bière, Switzerland; 0.17 g/kg of dry matter) and the LA concentrate contained lauric acid (C12:0; 65 g/kg of dry matter). A basal concentrate without Agolin Ruminant and lauric acid was fed during the pretreatment period (2 wk). Thereafter, the cows assigned to the AR-AR treatment received the AR concentrate during all 10 treatment weeks (5 periods of 2 wk each), whereas cows assigned to the AR-LA treatment received AR and LA concentrates rotated on a weekly basis. Methane emission was measured in climate respiration chambers during periods 1, 3, and 5. From period 3 onward, dry matter intake and milk protein concentration were reduced with the AR-LA treatment. Milk fat concentration was not affected, but the proportion of C12:0 in milk fat increased upon feeding C12:0. Molar proportions of acetate and propionate in rumen fluid were lower and higher, respectively, with the AR-LA than with the AR-AR treatment. Methane yield (g/kg of dry matter intake) and intensity (g/kg of fat- and protein-corrected milk yield) were not affected by treatment. Methane yield and intensity were significantly lower (12 and 11%, respectively) in period 1 compared with the pretreatment period, but no significant difference relative to pretreatment period was observed in period 3 (numerically 9 and 7% lower, respectively) and in period 5 (numerically 8 and 4% lower, respectively). Results indicate a transient decrease in CH4 yield and intensity in time, but no improvement in extent or persistency of the decline in CH4 due to rotational feeding of essential oils and C12:0 in lactating dairy cows.  相似文献   
290.
Feeding N in excess of requirement could require the use of additional energy to metabolize excess protein, and to synthesize and excrete urea; however, the amount and fate of this energy is unknown. Little progress has been made on this topic in recent decades, so an extension of work published in 1970 was conducted to quantify the effect of excess N on ruminant energetics. In part 1 of this study, the results of previous work were replicated using a simple linear regression to estimate the effect of excess N on energy balance. In part 2, mixed model methodology and a larger data set were used to improve upon the previously reported linear regression methods. In part 3, heat production, retained energy, and milk energy replaced the composite energy balance variable previously proposed as the dependent variable to narrow the effect of excess N. In addition, rumen degradable and undegradable protein intakes were estimated using table values and included as covariates in part 3. Excess N had opposite and approximately equal effects on heat production (+4.1 to +7.6 kcal/g of excess N) and retained energy (?4.2 to ?6.6 kcal/g of excess N) but had a larger negative effect on milk gross energy (?52 to ?68 kcal/g of excess N). The results suggest that feeding excess N increases heat production, but more investigation is required to determine why excess N has such a large effect on milk gross energy production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号