首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1517篇
  免费   64篇
  国内免费   1篇
电工技术   27篇
化学工业   536篇
金属工艺   11篇
机械仪表   37篇
建筑科学   52篇
能源动力   47篇
轻工业   187篇
水利工程   7篇
石油天然气   2篇
武器工业   1篇
无线电   111篇
一般工业技术   214篇
冶金工业   32篇
原子能技术   19篇
自动化技术   299篇
  2024年   3篇
  2023年   11篇
  2022年   94篇
  2021年   86篇
  2020年   39篇
  2019年   41篇
  2018年   45篇
  2017年   27篇
  2016年   45篇
  2015年   44篇
  2014年   63篇
  2013年   109篇
  2012年   103篇
  2011年   100篇
  2010年   86篇
  2009年   66篇
  2008年   65篇
  2007年   77篇
  2006年   60篇
  2005年   50篇
  2004年   44篇
  2003年   44篇
  2002年   36篇
  2001年   21篇
  2000年   20篇
  1999年   22篇
  1998年   18篇
  1997年   18篇
  1996年   15篇
  1995年   11篇
  1994年   17篇
  1993年   12篇
  1992年   10篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1984年   8篇
  1983年   5篇
  1982年   6篇
  1980年   6篇
  1979年   3篇
  1978年   5篇
  1977年   4篇
  1973年   2篇
  1971年   3篇
  1967年   2篇
  1966年   2篇
排序方式: 共有1582条查询结果,搜索用时 0 毫秒
71.
3‐Alkylidene‐2‐oxindoles represent a simple, yet enabling subfamily of indole alkaloids, and their ability to react as electron‐poor acceptors has largely been investigated. In contrast, their utility as pronucleophilic synthons remains elusive. In this context, the present article describes the successful execution of the direct, organocatalytic asymmetric Michael addition of prochiral 3‐alkylideneoxindoles to nitroolefins. A variety of γ‐substituted alkylideneoxindoles carrying two stereocenters at both the γ‐ and δ‐carbon sites was assembled with excellent stereoselectivity and without olefin isomerization or stereochemical ablation.  相似文献   
72.
The Alder ene functionalization reaction of double bonds containing macromolecules such as polyisobutene oligomer (PIB) and a styrene-butadiene-styrene triblock copolymer (SBS) samples with maleic anhydride (MAH) or diethyl maleate (DEM) as enophiles is described. The analysis of the products by means of different techniques assesses the addition of the polar molecules to the reactive vinylidene units of the polymer with functional degrees (FD) depending on the type of enophile and polymer reactivity. The role of the reaction conditions and the use as Lewis acids as catalysts are discussed in terms of their influence on the addition reaction extent and on the polymer molecular weight.  相似文献   
73.
Summary: In order to produce modified poly(lactic acid) (PLA) resins for applications requiring high melt viscosity and elasticity (e.g., low‐density foaming, thermoforming), a commercial PLA product has been reactively modified in melt by sequentially adding 1,4‐butanediol and 1,4‐butane diisocyanate as low‐molecular‐weight chain extenders. By varying amounts of the two chain extenders associated to the end group contents of PLA, three resulted samples were obtained. They were then structurally characterized by FTIR spectroscopy and molecular structure analysis. Their thermal, dynamic mechanical thermal properties and melt viscoelastic properties were investigated and compared along with unmodified PLA. The results indicated that chemical modification may be characterized as chain scission, extension, crosslinking, or any combination of the three depending on the chain extender amounts. The increase of PLA molecular weight could be obtained by properly controlling amounts of two chain extenders. The samples with increased molecular weights showed enhanced melt viscosity and elasticity. Such property improvements promised a successful application for modified PLA in a batch foam processing by producing foams with reduced cell size, increased cell density and lowered bulk foam density in comparison with plain PLA foam.

Cellular morphology of a modified PLA foam.  相似文献   

74.
We designed and manufactured a polymeric system with combined hydrophilic–hydrophobic properties by loading gelatin nanoparticles (GNPs) containing bovine serum albumin (BSA) into poly(ε‐caprolactone) (PCL) fibers. Our ultimate goal was to create a device capable of carrying and releasing protein drugs. Such a system could find several biomedical applications, such as those in controlled release systems, surgical sutures, and bioactive scaffolds for tissue engineering. A two‐step desolvation method was used to produce GNPs, whereas PCL fibers were produced by a dry‐spinning method. The morphological, mechanical, and thermal properties of the produced system were investigated, and the distribution of nanoparticles both inside and on the surface of the fibers was examined. The effect of the particles on the biodegradability of the fibers was also evaluated. In vitro preliminary tests were performed to study the release of BSA from nanoparticle‐laden fibers and to compare this with its release from free nanoparticles. Our results indicate that the distribution of particles inside the fibers was quite homogeneous and only a few of them were present on the surface. The presence of the particles in the fibers did not affect the thermal properties of the PCL polymer matrix, although it created voids that affected the degradation characteristics so the PCL fibers favored faster erosion compared to the plain fibers. Preliminary results indicate that the release from GNP‐laden fibers occurred much more slowly compared to that in the free GNPs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44233.  相似文献   
75.
76.
Upgrading of bio-oils obtained from the fast pyrolysis of biomasses requires the development of efficient catalysts able to work under mild conditions and to cope with the complex chemical nature of the reactant. The present work focuses on the use of the ruthenium based Shvo homogeneous catalyst for the hydrogenation of model mixtures (vanillin, cinnamaldehyde, methylacetophenone, glycolaldehyde, acetol, acetic acid) and of a real bio-oil. The hydrogenation of model compounds has been investigated both in mono- and biphasic mixtures under a P(H2) = 10 atm in the temperature range of 90-145 °C varying the substrate to catalyst molar ratio from 2000:1 to 200:1. Employing the most active reaction conditions (substrate/catalyst 200:1, T = 145 °C, P(H2) = 10 atm) the Shvo catalyst maintains its performances under acidic “bio-oil conditions” leading to the almost quantitative conversion of the polar double bonds within 1 h. The activity of the Shvo catalyst was also investigated for the hydrogenation of a bio-oil from poplar in solvent free conditions. Hydrogenation deeply changed the chemical nature of the pyrolysis oil. Aldehydes, ketones and non-aromatic double bonds were almost totally hydrogenated. The catalytic system also promoted the hydrolysis of sugar oligomers into monomers.  相似文献   
77.
Hybrid materials obtained through a Microwave-assisted grafting of organic functional groups on mesoporous silica (MCM-41 type) have been characterized by X-ray powder diffraction, TG-DSC, N2 adsorption, solid state 13C- and 29Si-NMR, TEM and SEM. The studied grafting procedure is effective in the preparation of hybrid organosilicas under solvent-free conditions. Microwaves allows an ultra-fast and clean functionalization of the mesoporous materials and the method has been applied to produce a wide series of functional materials. The hybrid materials maintain the original mesoporous structure when the loading of linked organic groups does not exceed 10 %. In this cases, the slight pore volume reduction is linearly correlated to the organic amount in the product. If functional groups able to interact among them through hydrogen bond are used, hybrid materials exhibit high Organic/SiO2 ratios and low pore volumes due to the formation of a network occluding the pores, where functional groups of free organosilane molecules interacts with the functional groups of molecules linked to the matrix. NMR data confirm that the network is composed by organosilane molecules linked or not to the framework. Acid washing is able to labilize hydrogen bond and open the network. In the case of bulky but chemically inert functionalising agents the network is not produced.  相似文献   
78.
Herein, we present poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE) films characterized by an unpatterned microstructure and a specific hydrophobicity, capable of boosting a drastic cytoskeleton architecture remodeling, culminating with the neuronal-like differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs). We have used two different filming procedures to prepare the films, solvent casting (PBCE) and compression-moulding (PBCE*). PBCE film had a rough and porous surface with spherulite-like aggregations (Ø = 10–20 μm) and was characterized by a water contact angle = 100°. PBCE* showed a smooth and continuous surface without voids and visible spherulite-like aggregations and was more hydrophobic (WCA = 110°). Both surface characteristics were modulated through the copolymerization of different amounts of ether-oxygen-containing co-units into PBCE chemical structure. We showed that only the surface characteristics of PBCE-solvent-casted films steered hBM-MSCs toward a neuronal-like differentiation. hBM-MSCs lost their canonical mesenchymal morphology, acquired a neuronal polarized shape with a long cell protrusion (≥150 μm), expressed neuron-specific class III β-tubulin and microtubule-associated protein 2 neuronal markers, while nestin, a marker of uncommitted stem cells, was drastically silenced. These events were observed as early as 2-days after cell seeding. Of note, the phenomenon was totally absent on PBCE* film, as hBM-MSCs maintained the mesenchymal shape and behavior and did not express neuronal/glial markers.  相似文献   
79.
Small cell lung cancer (SCLC) is an aggressive type of lung cancer with high mortality that is caused by frequent relapses and acquired resistance. Despite that several target-based approaches with potential therapeutic impact on SCLC have been identified, numerous targeted drugs have not been successful in providing improvements in cancer patients when used as single agents. A combination of targeted therapies could be a strategy to induce maximum lethal effects on cancer cells. As a starting point in the development of new drug combination strategies for the treatment of SCLC, we performed a mid-throughput screening assay by treating a panel of SCLC cell lines with BETi or AKi in combination with PARPi or EZH2i. We observed drug synergy between I-BET762 and Talazoparib, BETi and PARPi, respectively, in SCLC cells. Combinatorial efficacy was observed in MYCs-amplified and MYCs-wt SCLC cells over SCLC cells with impaired MYC signaling pathway or non-tumor cells. We indicate that drug synergy between I-BET762 and Talazoparib is associated with the attenuation HR-DSBR process and the downregulation of various players of DNA damage response by BET inhibition, such as CHEK2, PTEN, NBN, and FANCC. Our results provide a rationale for the development of new combinatorial strategies for the treatment of SCLC.  相似文献   
80.
The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon) landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer’s disease and diabetes. For this purpose, antioxidant activity was assessed using different tests: ferric reducing ability power (FRAP), 2,2-diphenyl-1-picryl hydrazyl (DPPH), nitric oxide (˙NO) and superoxide (O2˙) scavenging and lipid peroxidation inhibition assays. Anticholinesterase activity was investigated by quantifying the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, whereas antidiabetic activity was investigated by α-amylase and α-glucosidase inhibition tests. To understand the contribution of metabolites, phytochemical screening was also performed by high performance liquid chromatography-diode array detector (HPLC-DAD) system. Among all, methanol extract of PER09, PER04 and ECU44 landraces exhibited the highest relative antioxidant capacity index (RACI). ECU44 was found to be rich in 4,5-di-O-caffeoylquinic acid (CQA) and 3,5-di-O-CQA and displayed a good α-amylase and α-glucosidase inhibition, showing the lowest IC50 values. Flavonoids, instead, seem to be involved in the AChE and BChE inhibition. The results of this study revealed that the bioactive compound content differences could be determinant for the medicinal properties of this plant especially for antioxidant and antidiabetic activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号