首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1644403篇
  免费   28439篇
  国内免费   7063篇
电工技术   34930篇
综合类   6622篇
化学工业   276739篇
金属工艺   66092篇
机械仪表   46592篇
建筑科学   49414篇
矿业工程   11684篇
能源动力   50578篇
轻工业   131169篇
水利工程   16674篇
石油天然气   37897篇
武器工业   158篇
无线电   200300篇
一般工业技术   306608篇
冶金工业   233546篇
原子能技术   34349篇
自动化技术   176553篇
  2021年   15714篇
  2020年   12106篇
  2019年   14858篇
  2018年   17985篇
  2017年   17339篇
  2016年   22753篇
  2015年   17825篇
  2014年   29108篇
  2013年   88641篇
  2012年   39505篇
  2011年   54187篇
  2010年   45385篇
  2009年   52771篇
  2008年   49827篇
  2007年   47601篇
  2006年   48115篇
  2005年   43137篇
  2004年   44907篇
  2003年   44578篇
  2002年   43154篇
  2001年   40585篇
  2000年   38394篇
  1999年   38712篇
  1998年   66879篇
  1997年   52592篇
  1996年   44062篇
  1995年   36007篇
  1994年   33135篇
  1993年   32862篇
  1992年   27544篇
  1991年   24795篇
  1990年   24975篇
  1989年   24104篇
  1988年   22596篇
  1987年   20777篇
  1986年   20213篇
  1985年   23555篇
  1984年   23129篇
  1983年   21047篇
  1982年   19835篇
  1981年   20008篇
  1980年   18640篇
  1979年   19043篇
  1978年   18275篇
  1977年   19264篇
  1976年   22349篇
  1975年   16350篇
  1974年   15808篇
  1973年   15925篇
  1972年   13397篇
排序方式: 共有10000条查询结果,搜索用时 703 毫秒
901.
Bulge is a defect that causes geometrical inaccuracy and premature failure in the innovative incremental sheet forming (ISF) process. This study has two-fold objectives: (1) knowing the bulging behavior of a Cu clad tri-layered steel sheet as a function of forming conditions, and (2) analyzing the bending effect on bulging in an attempt to identify the associated mechanism. A series of ISF tests and bending analysis are performed to realize these objectives. From the cause-effect analysis, it is found that bulge formation in the layered sheet is sensitive to forming conditions in a way that bulging can be minimized utilizing annealed material and performing ISF with larger tool diameter and step size. The bending under tension analysis reveals that the formation of bulge is an outgrowth of bending moment that the forming tool applies on the sheet during ISF. Furthermore, the magnitude of bending moment depending upon the forming conditions varies from 0.046 to 10.24 N·m/m and causes a corresponding change in the mean bulge height from 0.07 to 0.91 mm. The bending moment governs bulging in layered sheet through a linear law. These findings lead to a conclusion that the bulge defect can be overcome by controlling the bending moment and the formula proposed can be helpful in this regards.  相似文献   
902.
903.
We used perceptual and oculomotor measures to understand the negative impacts of low (phantom array) and high (motion blur) duty cycles with a high‐speed, AR‐likehead‐mounted display prototype. We observed large intersubject variability for the detection of phantom array artifacts but a highly consistent and systematic effect on saccadic eye movement targeting during low duty cycle presentations. This adverse effect on saccade endpoints was also related to an increased error rate in a perceptual discrimination task, showing a direct effect of display duty cycle on the perceptual quality. For high duty cycles, the probability of detecting motion blur increased during head movements, and this effect was elevated at lower refresh rates. We did not find an impact of the temporal display characteristics on compensatory eye movements during head motion (e.g., VOR). Together, our results allow us to quantify the tradeoff of different negative spatiotemporal impacts of user movements and make subsequent recommendations for optimized temporal HMD parameters.  相似文献   
904.
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism – yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.  相似文献   
905.
The present study focuses on the sintering of silicon carbide-based ceramics (SiC) by liquid phase sintering (LPS) followed by characterization of the produced ceramics. AlN/Re2O3 mixtures were used as additives in the LPS process. In the first step, the LPS-SiC materials were produced in a graphite resistance furnace in the form of discs at different temperatures. The conditions with the best results regarding real density and relative density were taken as reference for sintering in the form of prismatic bars. In the second step, these samples were evaluated regarding fracture toughness (KIC), by the Single Edge V Notch Beam – SEVNB – method, and flexural strength. KIC behavior was evaluated according to the depth and curvature radius of the notches. Reliable KIC values were presented when the ceramic displayed a small curvature radius at the notch tip. When the radius was large, it did not maintain the square root singularity of the notch tip. Tests were carried out to determine KIC values in atmospheric air and water. KIC results were lower in water than air, with a decrease ranging between 2.56% and 11.26%. The observations indicated a direct grain size correlation between KIC values and fracture strength of the SiC ceramics.  相似文献   
906.
This study aims to evaluate the tribological behaviour of 3Y-TZP/Ta (20 vol%) ceramic-metal composites and 3Y-TZP monolithic ceramic prepared by spark plasma sintering (SPS) against ultrahigh molecular weight polyethylene (UHMWPE). According to the results of pin (UHMWPE)-on-flat wear test under dry conditions, the UHMWPE – 3Y-TZP/Ta system exhibited lower volume loss and friction coefficient than the UHMWPE – monolithic ceramic combination due to the presence of an autolubricating layer that provides sufficient lubrication for reducing the friction. Owing to the lubrication of the liquid media, under wet conditions obtained using simulated body fluid (SBF), similar behaviour is observed in both cases. Additionally, the ceramic and biocomposite materials were subjected to a low temperature degradation (LTD) process (often referred to as “ageing”) to evaluate the changes in the tribological behaviour after this treatment. In this particular case, the wear properties of the UHMWPE-biocomposite system were found to be less influenced by ageing in contrast to the case of the UHMWPE-zirconia monolithic material. In addition to their exceptional mechanical performance, 3Y-TZP/Ta composites also showed high resistance to low temperature degradation and good tribological properties, making them promising candidates for biomedical applications, especially for orthopaedic implants.  相似文献   
907.
908.
909.
910.
Tissue engineered grafts show great potential as regenerative implants for diseased or injured tissues within the human body. However, these grafts suffer from poor nutrient perfusion and waste transport, thus decreasing their viability post-transplantation. Graft vascularization is therefore a major area of focus within tissue engineering because biologically relevant conduits for nutrient and oxygen perfusion can improve viability post-implantation. Many researchers used microphysiological systems as testing platforms for potential grafts owing to an ability to integrate vascular networks as well as biological characteristics such as fluid perfusion, 3D architecture, compartmentalization of tissue-specific materials, and biophysical and biochemical cues. Although many methods of vascularizing these systems exist, microvascular self-assembly has great potential for bench-to-clinic translation as it relies on naturally occurring physiological events. In this review, the past decade of literature is highlighted, and the most important and tunable components yielding a self-assembled vascular network on chip are critically discussed: endothelial cell source, tissue-specific supporting cells, biomaterial scaffolds, biochemical cues, and biophysical forces. This paper discusses the bioengineered systems of angiogenesis, vasculogenesis, and lymphangiogenesis and includes a brief overview of multicellular systems. It concludes with future avenues of research to guide the next generation of vascularized microfluidic models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号