首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   6篇
电工技术   8篇
化学工业   61篇
金属工艺   5篇
机械仪表   10篇
能源动力   2篇
轻工业   21篇
石油天然气   1篇
无线电   35篇
一般工业技术   85篇
冶金工业   29篇
原子能技术   1篇
自动化技术   33篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   2篇
  2019年   6篇
  2018年   5篇
  2017年   2篇
  2016年   7篇
  2014年   10篇
  2013年   25篇
  2012年   12篇
  2011年   17篇
  2010年   8篇
  2009年   10篇
  2008年   14篇
  2007年   17篇
  2006年   12篇
  2005年   11篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   9篇
  1996年   6篇
  1995年   10篇
  1994年   6篇
  1993年   9篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有291条查询结果,搜索用时 62 毫秒
41.
Food Science and Biotechnology - Despite centuries of developing strategies to prevent food-associated illnesses, food safety remains a significant concern, even with multiple technological...  相似文献   
42.
Na1/2Bi1/2TiO3-based materials have been earmarked for one of the first large-volume applications of lead-free piezoceramics in high-power ultrasonics. Zn2+-doping is demonstrated as a viable route to enhance the thermal depolarization temperature and electromechanically harden (1-y)Na1/2Bi1/2TiO3-yBaTiO3 (NBT100yBT) with a maximum achievable operating temperature of 150 °C and mechanical quality factor of 627 for 1 mole % Zn2+-doped NBT6BT. Although quenching from sintering temperatures has been recently touted to enhance TF-R, with quenching the doped compositions featuring an additional increase in TF-R by 17 °C, it exhibits negligible effect on the electromechanical properties. The effect is rationalized considering the missing influence on conductivity and therefore, negligible changes in the defect chemistry upon quenching. High-resolution diffraction indicates that Zn2+-doped samples favor the tetragonal phase with enhanced lattice distortion, further corroborated by 23Na Nuclear Magnetic Resonance investigations.  相似文献   
43.
We propose and analyse a finite element method with mass lumping (LESFEM) for the numerical approximation of reaction–diffusion systems (RDSs) on surfaces in \({\mathbb {R}}^3\) that evolve under a given velocity field. A fully-discrete method based on the implicit–explicit (IMEX) Euler time-discretisation is formulated and dilation rates which act as indicators of the surface evolution are introduced. Under the assumption that the mesh preserves the Delaunay regularity under evolution, we prove a sufficient condition, that depends on the dilation rates, for the existence of invariant regions (i) at the spatially discrete level with no restriction on the mesh size and (ii) at the fully-discrete level under a timestep restriction that depends on the kinetics, only. In the specific case of the linear heat equation, we prove a semi- and a fully-discrete maximum principle. For the well-known activator-depleted and Thomas reaction–diffusion models we prove the existence of a family of rectangles in the phase space that are invariant only under specific growth laws. Two numerical examples are provided to computationally demonstrate (i) the discrete maximum principle and optimal convergence for the heat equation on a linearly growing sphere and (ii) the existence of an invariant region for the LESFEM–IMEX Euler discretisation of a RDS on a logistically growing surface.  相似文献   
44.
A combination of theory and experiment is used to quantitatively understand the conductance of single-molecule benzenediamine-gold junctions. A newly developed analysis is applied to a measured junction conductance distribution, based on 59 000 individual conductance traces, which has a clear peak at 0.0064 G0 and a width of +/-47%. This analysis establishes that the distribution width originates predominantly from variations in conductance across different junctions rather than variations in conductance during junction elongation. Conductance calculations based on density functional theory (DFT) for 15 distinct junction geometries show a similar spread. We show explicitly that differences in local structure have a limited influence on conductance because the amine-Au bonding motif is well-defined and flexible, explaining the narrow distributions seen in the experiments. The minimal impact of junction structure on conductance permits an unambiguous comparison of calculated and measured conductance values and a direct assessment of the widely used DFT theoretical framework. The average calculated conductance (0.046 G0) is found to be seven times larger than experiment. This discrepancy is explained quantitatively in terms of electron correlation effects to the molecular level alignments in the junction.  相似文献   
45.
Minority carrier lifetime is an efficient indicator of defect levels present in the starting material as well as process and equipment induced defects. By employing rapid thermal processing (RTP) and rapid photothermal processing (RPP) as the thermal processing techniques, we have studied the effect of ultraviolet (UV) and vacuum ultraviolet (VUV) photons on the bulk minority carrier lifetime of phosphorous doped and undoped single crystal silicon wafers. For both diffused and undiffused wafers, we have observed an enhancement in the minority carrier lifetime when UV and VUV photons are used in conjunction with the samples processed without the use of UV and VUV photons. The effect of ramp rates on the minority carrier lifetime and the significance of optimized thermal cycles have also been studied in this paper. A possible explanation based on the dependence of diffusion coefficient on the photo spectrum of light source is also given in this paper.  相似文献   
46.
We measure the conductance of amine-terminated molecules by breaking Au point contacts in a molecular solution at room temperature. We find that the variability of the observed conductance for the diamine molecule-Au junctions is much less than the variability for diisonitrile- and dithiol-Au junctions. This narrow distribution enables unambiguous conductance measurements of single molecules. For an alkane diamine series with 2-8 carbon atoms in the hydrocarbon chain, our results show a systematic trend in the conductance from which we extract a tunneling decay constant of 0.91 +/- 0.03 per methylene group. We hypothesize that the diamine link binds preferentially to undercoordinated Au atoms in the junction. This is supported by density functional theory-based calculations that show the amine binding to a gold adatom with sufficient angular flexibility for easy junction formation but well-defined electronic coupling of the N lone pair to the Au. Therefore, the amine linkage leads to well-defined conductance measurements of a single molecule junction in a statistical study.  相似文献   
47.
Simulation and numerical modeling are becoming increasingly popular due to the ability to seek solutions for a problem without undertaking real-life experiments. For the problems of heat transfer, these techniques to generate relevant data by incorporating different changes to the input parameters. Heat transfer property of textile materials is a major concern since it influences comfort properties of clothing. In this paper, numerical simulation was applied to evaluate the heat flux, temperature distributions, and convective heat transfer coefficients of the fibrous insulating materials treated with aerogel. The computational model simulated the insulation behavior of nonwoven fabrics without and with aerogel. Ansys and Comsol were used to model and simulate heat transfer. The simulation was performed assuming laminar flow and since the Mach number was < 0.3, the compressible flow model with Mach number < 0.3 was used. The results of simulation were correlated to experimental measurements for validation. Furthermore, aerogel-treated fabric samples showed better thermal performance. Using this model, the heat transfer properties of the nonwoven fabrics treated with aerogel can be optimized further.  相似文献   
48.
For many garment applications where protection is needed against hostile environments, part of the requirement is for insulation to shield the wearer from extremes of temperature. For an insulating garment to be fully effective, it needs to allow the wearer to move freely so that they can carry out their intended activity efficiently. Traditional materials achieve their insulation by trapping air within the structure thereby not only limiting heat loss by convection but also making good use of the low thermal conductivity of air to cocoon the wearer within a comfortable environment. To achieve effective protection with conventional textiles, it is usually necessary to have a thick fibrous layer, or series of layers, to trap a sufficient quantity of air to provide the required level of insulation. Several disadvantages arise as a result. For example, thick layers of insulating textile materials reduce the ability of the wearer to move in a normal manner so that the conduct of detailed manual tasks can become very difficult; the layers lose their insulating capacity when the trapped air is lost as they are compressed; the insulating capacity falls rapidly as moisture collects within the fibrous insulator – it does not have to become sensibly wet for this to happen; just 15% moisture regain can give a dramatic reduction in insulating capacity. Not surprisingly therefore, there has been continued interest in developing insulators that might be able to overcome the disadvantages of conventional textile materials and improve the mobility of the wearer by allowing the use of only a very thin layer of extremely-high insulating performance to provide the required thermal protection. One class of materials from which suitable candidates might be drawn is aerogels; their attractiveness derives from the fact that they show the highest thermal insulation capacity of any materials developed so far. Despite sporadic high levels of interest, commercialisation has been slow. Aerogels have been found to possess their own set of disadvantages such as fragility; rigidity; dust formation during working and cumbersome, expensive, batch-wise manufacturing processes. They may well have been destined to become a product of minor interest, confined to very specialist applications where cost was of little concern. However, methods have been developed to combine aerogels and fibres in composite structures which maintain extremely high insulating capacity whilst demonstrating sufficient flexibility for use in garments. Ways have been found to prevent the formation of powder as aerogel composite fabrics are worked. Most significant though, is the achievement, arising from a project supported by the Korean Government, of a simplified one-step production process developed with the express aim of providing a substantial reduction in the cost of aerogels. Suitably-priced aerogel is now available and this should provide fresh stimulus for research and development teams to engage in new product development work utilising aerogels in textiles and garments for thermal insulation. The mechanisms through which aerogels achieve their outstanding thermal insulating ability is unconventional, at least in terms of materials used in textiles. This issue of Textile Progress therefore includes detail about thermal transport in aerogels before reviewing the various forms in which aerogels can now be made, some of their applications and the research priorities that are now beginning to emerge.  相似文献   
49.
50.
A nine-year (1999–2007) continuous panel of crash histories on interstates in Washington State, USA, was used to estimate random parameter negative binomial (RPNB) models for various aggregations of crashes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号