首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1140篇
  免费   97篇
  国内免费   1篇
电工技术   4篇
化学工业   655篇
金属工艺   15篇
机械仪表   15篇
建筑科学   39篇
矿业工程   6篇
能源动力   30篇
轻工业   238篇
水利工程   6篇
石油天然气   5篇
无线电   25篇
一般工业技术   126篇
冶金工业   21篇
原子能技术   1篇
自动化技术   52篇
  2024年   2篇
  2023年   28篇
  2022年   144篇
  2021年   224篇
  2020年   50篇
  2019年   53篇
  2018年   44篇
  2017年   58篇
  2016年   74篇
  2015年   47篇
  2014年   59篇
  2013年   68篇
  2012年   58篇
  2011年   59篇
  2010年   34篇
  2009年   50篇
  2008年   37篇
  2007年   29篇
  2006年   25篇
  2005年   16篇
  2004年   15篇
  2003年   13篇
  2002年   10篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
排序方式: 共有1238条查询结果,搜索用时 15 毫秒
101.
Chitosan coatings are deposited on the surface of Mg20Zn magnesium alloy by means of the spin coating technique. Their structure was investigated using Fourier Transform Infrared Spectroscopy (FTIR) an X-ray photoelectron spectroscopy (XPS). The surface morphology of the magnesium alloy substrate and chitosan coatings was determined using Scanning Electron Microscope (FE-SEM) analysis. Corrosion tests (linear sweep voltamperometry and chronoamperometry) were performed on uncoated and coated magnesium alloy in the Hank’s solution. In both cases, the hydrogen evolution method was used to calculate the corrosion rate after 7-days immersion in the Hank’s solution at 37 °C. It was found that the corrosion rate is 3.2 mm/year and 1.2 mm/year for uncoated and coated substrates, respectively. High corrosion resistance of Mg20Zn alloy covered by multilayer coating (CaP coating + chitosan water glass) is caused by formation of CaSiO3 and Ca3(PO4)2 compounds on its surface.  相似文献   
102.
Rhabdomyosarcoma (RMS) is a malignant soft tissue cancer that develops mostly in children and young adults. With regard to histopathology, four rhabdomyosarcoma types are distinguishable: embryonal, alveolar, pleomorphic and spindle/sclerosing. Currently, increased amounts of evidence indicate that not only gene mutations, but also epigenetic modifications may be involved in the development of RMS. Epigenomic changes regulate the chromatin architecture and affect the interaction between DNA strands, histones and chromatin binding proteins, thus, are able to control gene expression. The main aim of the study was to assess the role of protein arginine methyltransferases (PRMT) in the cellular biology of rhabdomyosarcoma. In the study we used two pan-inhibitors of PRMT, called AMI-1 and SAH, and evaluated their effects on proliferation and apoptosis of RMS cells. We observed that AMI-1 and SAH reduce the invasive phenotype of rhabdomyosarcoma cells by decreasing their proliferation rate, cell viability and ability to form cell colonies. In addition, microarray analysis revealed that these inhibitors attenuate the activity of the PI3K-Akt signaling pathway and affect expression of genes related to it.  相似文献   
103.
Phenolic acids possess many beneficial biological activities, including antioxidant and anti-inflammatory properties. Unfortunately, their low bioavailability restricts their potential medical uses, as it limits the concentration of phenolic acids achievable in the organism. The conjugation with phospholipids constitutes one of the most effective strategies to enhance compounds bioavailability in biological systems. In the present study, the conjugates of anisic (ANISA) and veratric acid (VA) with phosphatidylcholine (PC) were investigated. Since both ANISA and VA are inhibitors of tyrosinase, a melanocyte enzyme, the expression of which increases during tumorigenesis, anticancer potential of the conjugates was tested in several metastatic melanoma cell lines. The conjugates proved to be antiproliferative, apoptosis-inducing and cell-cycle-affecting agents, selective for cancerous cells and not affecting normal fibroblasts. The conjugates substituted by ANISA and VA, respectively, at both the sn-1 and sn-2 positions of PC, appeared the most promising, since they were effective against the vast majority of metastatic melanoma cell lines. Additionally, the conjugation of phenolic acids to PC increased their antioxidant activity. Molecular modeling was employed for the first time to estimate the features of the investigated conjugates relevant to their anticancer properties and membrane permeation. Again, the conjugates substituted by phenolic acid at both the sn-1 and sn-2 positions of PC seemed to be presumably most bioavailable.  相似文献   
104.
Background: The present study investigated the role of proteins from the bromodomain and extra-terminal (BET) family in schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia induced by prenatal methylazoxymethanol (MAM) administration (MAM-E17). Methods: An inhibitor of BET proteins, JQ1, was administered during adolescence on postnatal days (P) 23–P29, and behavioural responses (sensorimotor gating, recognition memory) and prefrontal cortical (mPFC) function (long-term potentiation (LTP), molecular and proteomic analyses) studies were performed in adult males and females. Results: Deficits in sensorimotor gating and recognition memory were observed only in MAM-treated males. However, adolescent JQ1 treatment affected animals of both sexes in the control but not MAM-treated groups and reduced behavioural responses in both sexes. An electrophysiological study showed LTP impairments only in male MAM-treated animals, and JQ1 did not affect LTP in the mPFC. In contrast, MAM did not affect activity-dependent gene expression, but JQ1 altered gene expression in both sexes. A proteomic study revealed alterations in MAM-treated groups mainly in males, while JQ1 affected both sexes. Conclusions: MAM-induced schizophrenia-like abnormalities were observed only in males, while adolescent JQ1 treatment affected memory recognition and altered the molecular and proteomic landscape in the mPFC of both sexes. Thus, transient adolescent inhibition of the BET family might prompt permanent alterations in the mPFC.  相似文献   
105.
Carnivorous plants are exemplary natural sources of secondary metabolites with biological activity. However, the therapeutic antimicrobial potential of these compounds is limited due to intrinsic resistance of selected bacterial pathogens, among which Pseudomonas aeruginosa represents an extreme example. The objective of the study was to overcome the intrinsic resistance of P. aeruginosa by combining silver nanoparticles (AgNPs) with secondary metabolites from selected carnivorous plant species. We employed the broth microdilution method, the checkerboard titration technique and comprehensive phytochemical analyses to define interactions between nanoparticles and active compounds from carnivorous plants. It has been confirmed that P. aeruginosa is resistant to a broad range of secondary metabolites from carnivorous plants, i.e., naphthoquinones, flavonoids, phenolic acids (MBC = 512 µg mL−1) and only weakly sensitive to their mixtures, i.e., extracts and extracts’ fractions. However, it was shown that the antimicrobial activity of extracts and fractions with a significant level of naphthoquinone (plumbagin) was significantly enhanced by AgNPs. Our studies clearly demonstrated a crucial role of naphthoquinones in AgNPs and extract interaction, as well as depicted the potential of AgNPs to restore the bactericidal activity of naphthoquinones towards P. aeruginosa. Our findings indicate the significant potential of nanoparticles to modulate the activity of selected secondary metabolites and revisit their antimicrobial potential towards human pathogenic bacteria.  相似文献   
106.
Temperature is one of the critical factors affecting gene expression in bacteria. Despite the general interest in the link between bacterial phenotypes and environmental temperature, little is known about temperature-dependent gene expression in plant pathogenic Pectobacterium atrosepticum, a causative agent of potato blackleg and tuber soft rot worldwide. In this study, twenty-nine P. atrosepticum SCRI1043 thermoregulated genes were identified using Tn5-based transposon mutagenesis coupled with an inducible promotorless gusA gene as a reporter. From the pool of 29 genes, 14 were up-regulated at 18 °C, whereas 15 other genes were up-regulated at 28 °C. Among the thermoregulated loci, genes involved in primary bacterial metabolism, membrane-related proteins, fitness-corresponding factors, and several hypothetical proteins were found. The Tn5 mutants were tested for their pathogenicity in planta and for features that are likely to remain important for the pathogen to succeed in the (plant) environment. Five Tn5 mutants expressed visible phenotypes differentiating these mutants from the phenotype of the SCRI1043 wild-type strain. The gene disruptions in the Tn5 transposon mutants caused alterations in bacterial generation time, ability to form a biofilm, production of lipopolysaccharides, and virulence on potato tuber slices. The consequences of environmental temperature on the ability of P. atrosepticum to cause disease symptoms in potato are discussed.  相似文献   
107.
Antimicrobial resistance is a growing public health concern that requires urgent action. Biofilm-associated resistance to antimicrobials begins at the attachment phase and increases as the biofilms maturate. Hence, interrupting the initial binding process of bacteria to surfaces is essential to effectively prevent biofilm-associated problems. Herein, we have evaluated the antibacterial and anti-biofilm activities of three ruthenium complexes in different oxidation states with 2-pyridin-2-yl-1H-benzimidazole (L1 = 2,2′-PyBIm): [(η6-p-cymene)RuIIClL1]PF6 (Ru(II) complex), mer-[RuIIICl3(CH3CN)L1]·L1·3H2O (Ru(III) complex), (H2L1)2[RuIIICl4(CH3CN)2]2[RuIVCl4(CH3CN)2]·2Cl·6H2O (Ru(III/IV) complex). The biological activity of the compounds was screened against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa strains. The results indicated that the anti-biofilm activity of the Ru complexes at concentration of 1 mM was better than that of the ligand alone against the P. aeruginosa PAO1. It means that ligand, in combination with ruthenium ion, shows a synergistic effect. The effect of the Ru complexes on cell surface properties was determined by the contact angle and zeta potential values. The electric and physical properties of the microbial surface are useful tools for the examined aggregation phenomenon and disruption of the adhesion. Considering that intermolecular interactions are important and largely define the functions of compounds, we examined interactions in the crystals of the Ru complexes using the Hirshfeld surface analysis.  相似文献   
108.
Gestational diabetes mellitus (GDM) is one of the most common metabolic diseases in pregnant women. Its early diagnosis seems to have a significant impact on the developing fetus, the course of delivery, and the neonatal period. It may also affect the later stages of child development and subsequent complications in the mother. Therefore, the crux of the matter is to find a biopredictor capable of singling out women at risk of developing GDM as early as the very start of pregnancy. Apart from the well-known molecules with a proven and clear-cut role in the pathogenesis of GDM, e.g., adiponectin and leptin, a potential role of newer biomolecules is also emphasized. Less popular and less known factors with different mechanisms of action include: galectins, growth differentiation factor-15, chemerin, omentin-1, osteocalcin, resistin, visfatin, vaspin, irisin, apelin, fatty acid-binding protein 4 (FABP4), fibroblast growth factor 21, and lipocalin-2. The aim of this review is to present the potential and significance of these 13 less known biomolecules in the pathogenesis of GDM. It seems that high levels of FABP4, low levels of irisin, and high levels of under-carboxylated osteocalcin in the serum of pregnant women can be used as predictive markers in the diagnosis of GDM. Hopefully, future clinical trials will be able to determine which biomolecules have the most potential to predict GDM.  相似文献   
109.
Hydrogels based on chitosan are very versatile materials which can be used for tissue engineering as well as in controlled drug delivery systems. One of the methods for obtaining a chitosan-based hydrogel is crosslinking by applying different components. The objective of the present study was to obtain a series of new crosslinked chitosan-based films by means of solvent casting method. Squaric acid—3,4-dihydroxy-3-cyclobutene-1,2-dione—was used as a safe crosslinking agent. The effect of the squaric acid on the structural, mechanical, thermal, and swelling properties of the formed films was determined. It was established that the addition of the squaric acid significantly improved Young’s modulus, tensile strength, and thermal stability of the obtained materials. Moreover, it should be stressed that the samples consisting of chitosan and squaric acid were characterized by a higher swelling than pure chitosan. The detailed characterization proved that squaric acid could be used as a new effective crosslinking agent.  相似文献   
110.
Atherosclerosis and nonalcoholic fatty liver disease are leading causes of morbidity and mortality in the Western countries. The renin–angiotensin system (RAS) with its two main opposing effectors, i.e., angiotensin II (Ang II) and Ang-(1–7), is widely recognized as a major regulator of cardiovascular function and body metabolic processes. Angiotensin-converting enzyme 2 (ACE2) by breaking-down Ang II forms Ang-(1–7) and thus favors Ang-(1–7) actions. Therefore, the aim of our study was to comprehensively evaluate the influence of prolonged treatment with ACE2 activator, diminazene aceturate (DIZE) on the development of atherosclerotic lesions and hepatic steatosis in apoE−/− mice fed a high-fat diet (HFD). We have shown that DIZE stabilized atherosclerotic lesions and attenuated hepatic steatosis in apoE−/− mice fed an HFD. Such effects were associated with decreased total macrophages content and increased α-smooth muscle actin levels in atherosclerotic plaques. Moreover, DIZE changed polarization of macrophages towards increased amount of anti-inflammatory M2 macrophages in the atherosclerotic lesions. Interestingly, the anti-steatotic action of DIZE in the liver was related to the elevated levels of HDL in the plasma, decreased levels of triglycerides, and increased biosynthesis and concentration of taurine in the liver of apoE−/− mice. However, exact molecular mechanisms of both anti-atherosclerotic and anti-steatotic actions of DIZE require further investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号