首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1959篇
  免费   125篇
  国内免费   2篇
电工技术   13篇
综合类   1篇
化学工业   769篇
金属工艺   22篇
机械仪表   41篇
建筑科学   68篇
矿业工程   1篇
能源动力   57篇
轻工业   393篇
水利工程   15篇
石油天然气   7篇
无线电   97篇
一般工业技术   229篇
冶金工业   138篇
原子能技术   5篇
自动化技术   230篇
  2024年   5篇
  2023年   30篇
  2022年   191篇
  2021年   189篇
  2020年   83篇
  2019年   68篇
  2018年   76篇
  2017年   72篇
  2016年   76篇
  2015年   68篇
  2014年   88篇
  2013年   127篇
  2012年   124篇
  2011年   144篇
  2010年   86篇
  2009年   80篇
  2008年   73篇
  2007年   62篇
  2006年   68篇
  2005年   46篇
  2004年   41篇
  2003年   44篇
  2002年   37篇
  2001年   12篇
  2000年   23篇
  1999年   19篇
  1998年   42篇
  1997年   29篇
  1996年   16篇
  1995年   7篇
  1994年   9篇
  1993年   8篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1979年   1篇
  1978年   2篇
  1976年   5篇
排序方式: 共有2086条查询结果,搜索用时 15 毫秒
41.
In recent years, the knowledge about the immune-mediated impairment of bone marrow precursors in immune-dysregulation and autoimmune disorders has increased. In addition, immune-dysregulation, secondary to marrow failure, has been reported as being, in some cases, the most evident and early sign of the disease and making the diagnosis of both groups of disorders challenging. Dyskeratosis congenita is a disorder characterized by premature telomere erosion, typically showing marrow failure, nail dystrophy and leukoplakia, although incomplete genetic penetrance and phenotypes with immune-dysregulation features have been described. We report on a previously healthy 17-year-old girl, with a cousin successfully treated for acute lymphoblastic leukemia, who presented with leukopenia and neutropenia. The diagnostic work-up showed positive anti-neutrophil antibodies, leading to the diagnosis of autoimmune neutropenia, a slightly low NK count and high TCR-αβ+-double-negative T-cells. A next-generation sequencing (NGS) analysis showed the 734C>A variant on exon 6 of the TINF2 gene, leading to the p.Ser245Tyr. The telomere length was short on the lymphocytes and granulocytes, suggesting the diagnosis of an atypical telomeropathy showing with immune-dysregulation. This case underlines the importance of an accurate diagnostic work-up of patients with immune-dysregulation, who should undergo NGS or whole exome sequencing to identify specific disorders that deserve targeted follow-up and treatment.  相似文献   
42.
As genetic and environmental influences on schizophrenia might converge on DNA methylation (DNAm) within loci which are both associated with the disease and implicated in response to environmental stress, we examined whether DNAm within CYP17A1, a hypothalamus–pituitary–adrenal axis gene which is situated within the schizophrenia risk locus 10q24.32, would mediate genetic and environmental effects on stress-related schizophrenia symptoms. DNAm within an exonic–intronic fragment of CYP17A1 was assessed in the blood of 66 schizophrenia patients and 63 controls using single-molecule real-time bisulfite sequencing. Additionally, the VNTR polymorphism of the AS3MT gene, a plausible causal variant within the 10q24.32 locus, was genotyped in extended patient and control samples (n = 700). The effects of local haplotype, VNTR and a polyenviromic risk score (PERS) on DNAm, episodic verbal memory, executive functions, depression, and suicidality of patients were assessed. Haplotype and PERS differentially influenced DNAm at four variably methylated sites identified within the fragment, with stochastic, additive, and allele-specific effects being found. An allele-specific DNAm at CpG-SNP rs3781286 mediated the relationship between the local haplotype and verbal fluency. Our findings do not confirm that the interrogated DNA fragment is a place where genetic and environmental risk factors converge to influence schizophrenia symptoms through DNAm.  相似文献   
43.
The potential of chitosan and carboxymethyl chitosan (CMC) cryogels cross-linked with diglycidyl ether of 1,4-butandiol (BDDGE) and poly(ethylene glycol) (PEGDGE) have been compared in terms of 3D culturing HEK-293T cell line and preventing the bacterial colonization of the scaffolds. The first attempts to apply cryogels for the 3D co-culturing of bacteria and human cells have been undertaken toward the development of new models of host–pathogen interactions and bioimplant-associated infections. Using a combination of scanning electron microscopy, confocal laser scanning microscopy, and flow cytometry, we have demonstrated that CMC cryogels provided microenvironment stimulating cell–cell interactions and the growth of tightly packed multicellular spheroids, while cell–substrate interactions dominated in both chitosan cryogels, despite a significant difference in swelling capacities and Young’s modulus of BDDGE- and PEGDGE-cross-linked scaffolds. Chitosan cryogels demonstrated only mild antimicrobial properties against Pseudomonas fluorescence, and could not prevent the formation of Staphylococcus aureus biofilm in DMEM media. CMC cryogels were more efficient in preventing the adhesion and colonization of both P. fluorescence and S. aureus on the surface, demonstrating antifouling properties rather than the ability to kill bacteria. The application of CMC cryogels to 3D co-culture HEK-293T spheroids with P. fluorescence revealed a higher resistance of human cells to bacterial toxins than in the 2D co-culture.  相似文献   
44.
Non-thermal plasma technology is increasingly being applied in the plant biology field. Despite the variety of beneficial effects of plasma-activated water (PAW) on plants, information about the mechanisms of PAW sensing by plants is still limited. In this study, in order to link PAW perception to the positive downstream responses of plants, transgenic Arabidopsis thaliana seedlings expressing the Ca2+-sensitive photoprotein aequorin in the cytosol were challenged with water activated by low-power non-thermal plasma generated by a dielectric barrier discharge (DBD) source. PAW sensing by plants resulted in the occurrence of cytosolic Ca2+ signals, whose kinetic parameters were found to strictly depend on the operational conditions of the plasma device and thus on the corresponding mixture of chemical species contained in the PAW. In particular, we highlighted the effect on the intracellular Ca2+ signals of low doses of DBD-PAW chemicals and also presented the effects of consecutive plant treatments. The results were discussed in terms of the possibility of using PAW-triggered Ca2+ signatures as benchmarks to accurately modulate the chemical composition of PAW in order to induce environmental stress resilience in plants, thus paving the way for further applications in agriculture.  相似文献   
45.
A decrease in the miR-124 expression was observed in various epithelial cancers. Like a classical suppressor, miR-124 can inhibit the translation of multiple oncogenic proteins. Epigenetic mechanisms play a significant role in the regulation of miR-124 expression and involve hypermethylation of the MIR-124-1/-2/-3 genes and the effects of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) according to the model of competing endogenous RNAs (ceRNAs). More than 40 interactomes (lncRNA/miR-124/mRNA) based on competition between lncRNAs and mRNAs for miR-124 binding have been identified in various epithelial cancers. LncRNAs MALAT1, NEAT1, HOXA11-AS, and XIST are the most represented in these axes. Fourteen axes (e.g., SND1-IT1/miR-124/COL4A1) are involved in EMT and/or metastasis. Moreover, eight axes (e.g., OIP5-AS1/miR-124-5p/IDH2) are involved in key pathways, such as Wnt/b-catenin, E2F1, TGF-β, SMAD, ERK/MAPK, HIF-1α, Notch, PI3K/Akt signaling, and cancer cell stemness. Additionally, 15 axes impaired patient survival and three axes reduced chemo- or radiosensitivity. To date, 14 cases of miR-124 regulation by circRNAs have been identified. Half of them involve circHIPK3, which belongs to the exonic ecircRNAs and stimulates cell proliferation, EMT, autophagy, angiogenesis, and multidrug resistance. Thus, miR-124 and its interacting partners may be considered promising targets for cancer therapy.  相似文献   
46.
Lithium compounds are of high interest to many industries. The presence of undesirable impurities in Li precursors leads to uncontrolled change in the functional properties of final compounds. Therefore, the development of reliable methods for lithium salt purification is considered a key factor for their application in various industries. This work focuses on the application of a titanium phosphate ion exchanger (Li-TiOP) toward Cu2+, Co2+, Mn2+, Ni2+, and Cr3+ ions in the purification of a saturated LiNO3 solution. The sorption kinetics of the selected ions, considering external and internal mass transfer, as well as chemical interaction, were deeply studied. The kinetic study showed that the values of intraparticle diffusion rate and effective diffusion coefficients for the studied ions decreased in the following order: Cr(III) ˃ Cu(II) Mn(II) ˃ Co(II) ˃ Ni(II). For all the selected ions, chemical interaction was described with a pseudo-second-order reaction model. The sorption kinetics were controlled by the size of the solvated metal ion, its effective charge, the electronic structure of the adsorbed ion, and the interaction with the functional groups of the sorbent. Due to fast kinetics, the high degree of removal of trace quantities of the impurities this material gives it consideration as a promising sorbent for the deep purification of lithium salts.  相似文献   
47.
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.  相似文献   
48.
We propose a new organ-conditioning strategy based on mesenchymal stromal cell (MSCs)/extracellular vesicle (EVs) delivery during hypothermic perfusion. MSCs/EVs marker CD73 is present on renal proximal tubular cells, and it protects against renal ischemia-reperfusion injury by converting adenosine monophosphate into adenosine (ADO). In this study, after checking if CD73-silenced EVs (EVsi) would impact in vitro tubular-cell proliferation, we perfused kidneys of a rat model of donation after circulatory death, with Belzer solution (BS) alone, BS supplemented with MSCs, EVs, or EVsi. The ADO and ATP levels were measured in the effluents and tissues. Global renal ischemic damage score (GRS), and tubular cell proliferation index (IPT) were evaluated in the tissue. EVsi did not induce cell proliferation in vitro. Ex vivo kidneys perfused with BS or BS + EVsi showed the worst GRS and higher effluent ADO levels than the MSC- and EV-perfused kidneys. In the EV-perfused kidneys, the tissue and effluent ATP levels and IPT were the highest, but not if CD73 was silenced. Tissue ATP content was positively correlated with tissue ADO content and negatively correlated with effluent ADO level in all groups. In conclusion, kidney conditioning with EVs protects against ischemic damage by activating the CD73/ADO system.  相似文献   
49.
Metastasis is a leading cause of mortality and poor prognosis in colorectal cancer (CRC). Thus, the identification of new compounds targeting cell migration represents a major clinical challenge. Recent findings evidenced a central role for dysregulated Notch in CRC and a correlation between Notch overexpression and tumor metastasis. MicroRNAs (miRNAs) have been reported to cross-talk with Notch for its regulation. Therefore, restoring underexpressed miRNAs targeting Notch could represent an encouraging therapeutic approach against CRC. In this context, S-adenosyl-L-methionine (AdoMet), the universal biological methyl donor, being able to modulate the expression of oncogenic miRNAs could act as a potential antimetastatic agent. Here, we showed that AdoMet upregulated the onco-suppressor miRNAs-34a/-34c/-449a and inhibited HCT-116 and Caco-2 CRC cell migration. This effect was associated with reduced expression of migration-/EMT-related protein markers. We also found that, in colorectal and triple-negative breast cancer cells, AdoMet inhibited the expression of Notch gene, which, by luciferase assay, resulted the direct target of miRNAs-34a/-34c/-449a. Gain- and loss-of-function experiments with miRNAs mimics and inhibitors demonstrated that AdoMet exerted its inhibitory effects by upregulating miRNAs-34a/-34c/-449a. Overall, these data highlighted AdoMet as a novel Notch inhibitor and suggested that the antimetastatic effects of AdoMet involve the miRNA-mediated targeting of Notch signaling pathway.  相似文献   
50.
Nanoparticles of metal–organic frameworks (MOF NPs) are crystalline hybrid micro- or mesoporous nanomaterials that show great promise in biomedicine due to their significant drug loading ability and controlled release. Herein, we develop porous capsules from aggregate of nanoparticles of the iron carboxylate MIL-100(Fe) through a low-temperature spray-drying route. This enables the concomitant one-pot encapsulation of high loading of an antitumor drug, methotrexate, within the pores of the MOF NPs, and the collagenase enzyme (COL), inside the inter-particular mesoporous cavities, upon the formation of the capsule, enhancing tumor treatment. This association provides better control of the release of the active moieties, MTX and collagenase, in simulated body fluid conditions in comparison with the bare MOF NPs. In addition, the loaded MIL-100 capsules present, against the A-375 cancer cell line, selective toxicity nine times higher than for the normal HaCaT cells, suggesting that MTX@COL@MIL-100 capsules may have potential application in the selective treatment of cancer cells. We highlight that an appropriate level of collagenase activity remained after encapsulation using the spray dryer equipment. Therefore, this work describes a novel application of MOF-based capsules as a dual drug delivery system for cancer treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号