Rate control at the MAC-layer is one of the fundamental building blocks in many wireless networks. Over the past two decades, around thirty mechanisms have been proposed in the literature. Among them, there are mechanisms that make rate selection decisions based on sophisticated measurements of wireless link quality, and others that are based on straight-forward heuristics. Minstrel, for example, is an elegant mechanism that has been adopted by hundreds of millions of computers, yet, not much was known about its performance until recently. The purpose of this paper is to provide a comprehensive survey and analysis of the existing solutions from the two fundamental aspects of rate control—metrics and algorithms. We also review how these solutions were evaluated and compared against each other. Based on our detailed studies and observations, we share important insights on future development of rate control mechanisms at the MAC-layer. This discussion also takes into account the recent developments in wireless technologies and emerging applications, such as Internet-of-Things, and shows issues that need to be addressed in the design of new rate control mechanisms suitable for these technologies and applications.
Recent years have witnessed considerable progress in the development of solar cells based on lead halide perovskite materials. However, their intrinsic instability remains a limitation. In this context, the interplay between the thermal degradation and the hydrophobicity of perovskite materials is investigated. To this end, the salt 1‐(4‐ethenylbenzyl)‐3‐(3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctylimidazolium iodide (ETI), is employed as an additive in hybrid perovskites, endowing the photoactive materials with high thermal stability and hydrophobicity. The ETI additive inhibits methylammonium (MA) permeation in methylammonium lead triiodide (MAPbI3) occurring due to intrinsic thermal degradation, by inhibiting out‐diffusion of the MA+ cation, preserving the pristine material and preventing decomposition. With this simple approach, high efficiency solar cells based on the unstable MAPbI3 perovskite are markedly stabilized under maximum power point tracking, leading to greater than twice the preserved efficiency after 700 h of continuous light illumination and heating (60 °C). These results suggest a strategy to tackle the intrinsic thermal decomposition of MAI, an essential component in all state‐of‐the‐art perovskite compositions. 相似文献
The constant pressure for making functional verification more agile has led to the conception of coverage driven verification (CDV) techniques. CDV has been implemented in verification testbenches using supervised learning techniques to model the relationship between coverage events and stimuli generation, providing a feedback between them. One commonly used technique is the classification- or decision-tree data mining, which has shown to be appropriate due to the easy modeling. Learning techniques are applied in two steps: training and application. Training is made on one or more sets of examples, which relate datasets to pre-determined classes. Precision of results by applying the predictive learning concept has shown to be sensitive to the size of the training set and the amount of imbalance of associated classes, this last meaning the number of datasets associated to each class is very different from each other. This work presents experiments on the manipulation of data mining training sets, by changing the size and reducing the imbalances, in order to check their influence on the CDV efficiency. To do that, a circuit example with a large input space and strong class imbalance was selected from the application domain of multimedia systems and another one, with a small input space that affects the coverage occurrences, was selected from the communication area. 相似文献
Many objective image quality assessment algorithms firstly apply quality metrics in local regions that results in a quality map, and then pool the quality values in the quality map into a single quality score. The simplest pooling method is the average of quality values, which assumes that all the quality values are independent and equally important. However, visual perception is so complex that the assumption underlying average pooling might be too strict. There is an agreement that some regions in the images might be more perceptually significant, which leads to more advanced spatial pooling methods. In this work we evaluate existing spatial pooling methods for five important quality attributes, which are proposed to reduce the complexity of image quality assessment. The results show that: (1) more advanced spatial pooling methods are generally better than simple average; (2) spatial pooling depends on both image quality metrics and the attributes of the image. 相似文献
Controlled Suzuki–Miyaura coupling polymerization of 7′‐bromo‐9′,9′‐dioctyl‐fluoren‐2′‐yl‐4,4,5,5‐tetramethyl‐[1,3,2]dioxaborolane initiated by bromo(4‐tert‐butoxycarbonylamino‐phenyl)(tri‐tert‐butylphosphine)palladium ( 1 ) or bromo(4‐diethoxyphosphoryl‐phenyl)(tri‐tert‐butylphosphine)palladium ( 2 ) yields functionalized polyfluorenes (Mn = 4 × 103 g mol?1, Mw/Mn < 1.2) with a single amine or phosphonic acid, respectively, end‐group. High temperature synthesis of cadmium selenide quantum dots with these functionalized polyfluorenes as stabilizing ligands yields hybrid particles consisting of good quality (e.g. emission full width at half maximum of 30 nm; size distribution σ < 10%) inorganic nanocrystals with polyfluorene attached to the surface, as corroborated by transmission electron microscopy analysis and analytical ultracentrifugation. Sedimentation studies on particle dispersions show that a substantial portion (ca. half) of the phosphonic acid terminated polyfluorene ligands is bound to the inorganic nanocrystals, versus ca. 5% for the amino‐functionalized polyfluorene ligands. Single particle micro‐photoluminescence spectroscopy shows an efficient and complete energy transfer from the polyfluorene layer to the inorganic quantum dot. 相似文献
The transfer of benchtop knowledge into large scale industrial production processes represents a challenge in the field of organic electronics. Large scale industrial production of organic electronics is envisioned as roll to roll (R2R) processing which nowadays comprises usually solution-based large area printing steps. The search for a fast and reliable fabrication process able to accommodate the deposition of both insulator and semiconductor layers in a single step is still under way. Here we report on the fabrication of organic field effect transistors comprising only evaporable small molecules. Moreover, both the gate dielectric (melamine) and the semiconductor (C60) are deposited in successive steps without breaking the vacuum in the evaporation chamber. The material characteristics of evaporated melamine thin films as well as their dielectric properties are investigated, suggesting the applicability of vacuum processed melamine for gate dielectric layer in OFETs. The transistor fabrication and its transfer and output characteristics are presented along with observations that lead to the fabrication of stable and virtually hysteresis-free transistors. The extremely low price of precursor materials and the ease of fabrication recommend the evaporation processes as alternative methods for a large scale, R2R production of organic field effect transistors. 相似文献
Current SoC design trends are characterized by the integration of larger amount of IPs targeting a wide range of application fields. Such multi-application systems are constrained by a set of requirements. In such scenario network-on-chips (NoC) are becoming more important as the on-chip communication structure. Designing an optimal NoC for satisfying the requirements of each individual application requires the specification of a large set of configuration parameters leading to a wide solution space. It has been shown that IP mapping is one of the most critical parameters in NoC design, strongly influencing the SoC performance. IP mapping has been solved for single application systems using single and multi-objective optimization algorithms. In this paper we propose the use of a multi-objective adaptive immune algorithm (M2AIA), an evolutionary approach to solve the multi-application NoC mapping problem. Latency and power consumption were adopted as the target multi-objective functions. To compare the efficiency of our approach, our results are compared with those of the genetic and branch and bound multi-objective mapping algorithms. We tested 11 well-known benchmarks, including random and real applications, and combines up to 8 applications at the same SoC. The experimental results showed that the M2AIA decreases in average the power consumption and the latency 27.3 and 42.1 % compared to the branch and bound approach and 29.3 and 36.1 % over the genetic approach. 相似文献
Model-based application development aims at increasing the application’s integrity by using models employed in clearly defined transformation steps leading to correct-by-construction artifacts. In this paper, we introduce a novel model-based approach for constructing correct distributed implementation of component-based models constrained by priorities. We argue that model-based methods are especially of interest in the context of distributed embedded systems due to their inherent complexity (e.g., caused by non-deterministic nature of distributed systems). Our method is designed based on three phases of transformation. The input is a model specified in terms of a set of behavioral components that interact through a set of high-level synchronization primitives (e.g., rendezvous and broadcasts) and priority rules for scheduling purposes. The first phase transforms the input model into a model that has no priorities. Then, the second phase transforms the deprioritized model into another model that resolves distributed conflicts by incorporating a solution to the committee coordination problem. Finally, the third phase generates distributed code using asynchronous point-to-point message passing primitives (e.g., TCP sockets). All transformations preserve the properties of their input model by ensuring observational equivalence. All the transformations are implemented and our experiments validate their effectiveness. 相似文献
Small‐molecule organic semiconductors are used in a wide spectrum of applications, ranging from organic light emitting diodes to organic photovoltaics. However, the low carrier mobility severely limits their potential, e.g., for large area devices. A number of factors determine mobility, such as molecular packing, electronic structure, dipole moment, and polarizability. Presently, quantitative ab initio models to assess the influence of these molecule‐dependent properties are lacking. Here, a multiscale model is presented, which provides an accurate prediction of experimental data over ten orders of magnitude in mobility, and allows for the decomposition of the carrier mobility into molecule‐specific quantities. Molecule‐specific quantitative measures are provided how two single molecule properties, the dependence of the orbital energy on conformation, and the dipole‐induced polarization determine mobility for hole‐transport materials. The availability of first‐principles based models to compute key performance characteristics of organic semiconductors may enable in silico screening of numerous chemical compounds for the development of highly efficient optoelectronic devices. 相似文献