The susceptibility of uninfected or Staphylococcus chromogenes-infected quarters to challenge with Staphylococcus aureus was measured. Seventeen S. chromogenes-infected quarters were challenged by infusion of S. aureus into the teat sinus; 47% (8 of 17) became infected and all 18 uninfected quarters challenged similarly with S. aureus became infected. No differences in daily milk yield were seen between uninfected quarters and S. chromogenes-infected quarters prior to S. aureus infusion. Postinfusion, milk yield for S. aureus-infected, S. chromogenes-infected, and S. chromogenes- and S. aureus-infected quarters differed. Somatic cell counts were elevated in S. chromogenes-infected quarters compared with uninfected quarters prior to S. aureus infusion. Somatic cell counts were not different between S. aureus- and S. chromogenes- and S. aureus-infected quarters postinfusion, but were different for S. chromogenes-infected quarters. Chloride concentrations in S. chromogenes- and S. aureus-infected quarters were different from either S. aureus-infected or S. chromogenes-infected quarters. Staphylococcus aureus colony forming units in quarters with preexisting S. chromogenes infections were lower than S. aureus colony-forming units in previously uninfected quarters. Possible protective mechanisms induced by S. chromogenes against superinfection by S. aureus are discussed. 相似文献
We present fundamental and quantitative comparisons between the techniques of porometry (or flow permporometry), porosimetry, image analysis and void network modelling for seven types of filter, chosen to encompass the range of simple to complex void structure. They were metal, cellulose and glass fibre macro- and meso-porous filters of various types. The comparisons allow a general re-appraisal of the limitations of each technique for measuring void structures. Porometry is shown to give unrealistically narrow void size distributions, but the correct filtration characteristic when calibrated. Shielded mercury porosimetry can give the quaternary (sample-level anisotropic) characteristics of the void structure. The first derivative of a mercury porosimetry intrusion curve is shown to underestimate the large number of voids, but this error can be largely corrected by the use of a void network model. The model was also used to simulate the full filtration characteristic of each sample, which agreed with the manufacturer's filtration ratings. The model was validated through its correct a priori simulation of absolute gas permeabilities for track etch, cellulose nitrate and sintered powder filters. 相似文献
This paper reports on the structural, mechanical and tribological properties of molybdenum–copper nanocomposite films ‘doped’ with small amounts of nitrogen, which contain either no nitride phase (i.e. the nitrogen is held in interstitial solid solution, mainly in molybdenum) or small amounts of lower nitrides (i.e. Mo2N). All films were deposited on Si wafers, AISI M2 high speed steel and AISI 316 stainless steel by reactive sputtering using a hot-filament-enhanced dc unbalanced magnetron system. A systematic approach was adopted to investigate the evolution of metal/metal and ceramic/metal phase combinations with increasing nitrogen content (up to 40 at.% N) in the film. Coating composition and microstructure were determined by cross-sectional TEM, SEM and XPS. XRD was used to identify (where possible) metallic and metal-nitride phases. Mechanical properties such as hardness and elastic modulus were determined by low load Knoop and instrumented Vickers indentation measurements. Reciprocating sliding, micro-abrasion and impact tests were performed to assess tribological performance.
It was found that increasing the nitrogen gas flow rate from 0 to 15 sccm (and therefore nitrogen content in the film from 0 to 24 at.% N), refined significantly the coating microstructure from columnar to a dense and more equiaxed morphology, increasing the hardness whilst maintaining (almost constant) elastic modulus values, close to that of molybdenum metal. Further increases in the nitrogen gas flow rate resulted in films that appeared to contain significant fractions of the Mo2N ceramic phase. SEM and cross-sectional TEM analyses of the film deposited at a nitrogen flow rate of 20 sccm (containing 36 at.% N) demonstrated a microstructure consisting of 50–100 nm wide columns, which contain small regions of contrast in dark-field images, of the order of 3–5 nm wide. A maximum hardness of 32 GPa and the highest hardness/modulus ratio was however found in the (predominantly metallic) film deposited at a nitrogen gas flow rate of 15 sccm. This film also performed best in both micro-abrasion and impact wear tests; in contrast, the ‘ceramic’ film (deposited at 20 sccm nitrogen flow rate) performed better in reciprocating sliding wear. 相似文献
Cr3C2-NiCr thermal spray coatings are extensively used to mitigate high temperature erosive wear in fluidised bed combustors and power generation/transport turbines. The aim of this work was to characterise the variation in oxide erosion response as a function of the Cr3C2-NiCr coating microstructure. Erosion was carried out at 700 °C and 800 °C with erodent impact velocities of 225-235 m/s. The erosion behaviour of the oxide scales formed on these coatings, was influenced by the coating microstructure and erosion temperature. Development of the carbide microstructure with extended heat treatment lead to variations in the erosion-corrosion response of the Cr3C2-NiCr coatings. 相似文献
The advantageous oxidation and wear properties of Cr3C2-NiCr thermal spray coatings have resulted in them being extensively applied to combat erosion at high temperatures. Under these conditions, oxide layers take on an ever more significant role in determining the composite response. The response of blended powder-based carbide coatings for erosion applications has formed the basis for application of cermet-based coatings at elevated temperature. In this study, the oxidation mechanisms of as-sprayed and heat-treated Cr3C2-NiCr blended powder-based coatings are characterized. Interdiffusion between the coating phases with long-term exposure increased the Cr content of the matrix phase. This had a significant effect on the oxidation mechanism. The implications of the change in oxidation mechanism and oxide morphology on the coating response to high-temperature erosion are discussed. 相似文献
Plasma electrolytic oxidation (PEO) is a specialised but well-developed process which has found applications in aerospace, oil/gas, textile, chemical, electrical and biomedical sectors. A novel range of coatings having technologically attractive physical and chemical properties (e.g. wear- and corrosion-resistance) can be produced by suitable control of the electrolyte as well as electrical parameters of the PEO process. Oxide ceramic films, 3 to 40 μm thick, were produced on 6082 aluminium alloy by DC PEO using 5 to 20 A/dm2 current density in KOH electrolyte with varied concentration (0.5 to 2.0 g/l). Phase analysis (composition and crystallite size) was carried out using X-ray diffraction and TEM techniques. Residual stresses associated with the crystalline coating phase (α-Al2O3) were evaluated using the X-ray diffraction Sin2ψ method. Nanoindentation studies were conducted to evaluate the hardness and elastic modulus. SEM, SPM and TEM techniques were utilised to study surface as well as cross-sectional morphology and nano features of the PEO coatings. Correlations between internal stress and coating thickness, surface morphology and phase composition are discussed. It was found that, depending on the current density and electrolyte concentration used, internal direct and shear stresses in DC PEO alumina coatings ranged from − 302 ± 19 MPa to − 714 ± 22 MPa and − 25 ± 12 MPa to − 345 ± 27 MPa, respectively. Regimes of PEO treatment favourable for the production of thicker coatings with minimal stress level, dense morphology and relatively high content of α-Al2O3 phase are identified. 相似文献
Protective surface layers with high corrosion resistance (Rp= 3.3·105 ohm cm2) and significant microhardness (H = 4.8 GPa), as compared to the substrate material, were obtained on MA8 magnesium alloy by bipolar Plasma Electrolytic Oxidation (PEO) in a silicate-fluoride electrolyte. The phase and elemental composition and morphology of the coatings were investigated. It was found that the application of the bipolar PEO mode enables one to synthesise on the alloy's surface a high-temperature phase of magnesium silicate, forsterite (Mg2SiO4) having good anticorrosion and mechanical properties. 相似文献