首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1315篇
  免费   80篇
  国内免费   2篇
电工技术   38篇
综合类   2篇
化学工业   398篇
金属工艺   10篇
机械仪表   30篇
建筑科学   45篇
能源动力   44篇
轻工业   160篇
水利工程   10篇
石油天然气   5篇
无线电   143篇
一般工业技术   205篇
冶金工业   62篇
原子能技术   8篇
自动化技术   237篇
  2024年   4篇
  2023年   23篇
  2022年   35篇
  2021年   95篇
  2020年   46篇
  2019年   48篇
  2018年   51篇
  2017年   37篇
  2016年   52篇
  2015年   34篇
  2014年   83篇
  2013年   82篇
  2012年   88篇
  2011年   102篇
  2010年   81篇
  2009年   58篇
  2008年   51篇
  2007年   60篇
  2006年   59篇
  2005年   34篇
  2004年   30篇
  2003年   30篇
  2002年   20篇
  2001年   21篇
  2000年   10篇
  1999年   13篇
  1998年   17篇
  1997年   21篇
  1996年   15篇
  1995年   14篇
  1994年   6篇
  1993年   11篇
  1992年   4篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1985年   7篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有1397条查询结果,搜索用时 15 毫秒
131.
The chemical synthesis and characterization of the first hybrid material composed by gold nanoparticles and single molecule magnets (SMMs) are described. Gold nanoparticles are functionalized via ligand exchange using a tetrairon(III) SMM containing two 1,2‐dithiolane end groups. The grafting is evidenced by the shift of the plasmon resonance peak recorded with a UV–vis spectrometer, by the suppression of nuclear magnetic resonance signals, by X‐ray photoemission spectroscopy peaks, and by transmission electron microscopy images. The latter evidence the formation of aggregates of nanoparticles as a consequence of the cross‐linking ability of Fe4 through the two 1,2‐dithiolane rings located on opposite sides of the metal core. The presence of intact Fe4 molecules is directly proven by synchrotron‐based X‐ray absorption spectroscopy and X‐ray magnetic circular dichroism spectroscopy, while a detailed magnetic characterization, obtained using electron paramagnetic resonance and alternating‐current susceptibility, confirms the persistence of SMM behavior in this new hybrid nanostructure.  相似文献   
132.
133.
In this work, the physical, chemical and electrical properties of Metal-Oxide-Semiconductor (MOS) capacitors with Spin-On-Glass (SOG)-based thin films as gate dielectric have been investigated. Experiments of SOG diluted with two different solvents (2-propanol and deionized water) were done in order to reduce the viscosity of the SOG solution so that thinner films (down to ∼20 nm) could be obtained and their general characteristics compared. Thin films of SOG were deposited on silicon by the sol-gel technique and they were thermally annealed using conventional oxidation furnace and Rapid Thermal Processing (RTP) systems within N2 ambient after deposition. SOG dilution using non-organic solvents like deionized water and further annealing (at relatively high temperatures ≥450 °C) are important processes intended to reduce the organic content of the films. Fourier-Transform Infrared (FTIR) Spectroscopy results have shown that water-diluted SOG films have a significant reduction in their organic content after increasing annealing temperature and/or dilution percentage when compared to those of undiluted SOG films. Both current-voltage (I-V) and capacitance-voltage (C-V) measurements show better electrical characteristics for SOG-films diluted in deionized water compared to those diluted in 2-propanol (which is an organic solvent). The electrical characteristics of H2O-diluted SOG thin films are very similar to those obtained from high quality thermal oxides so that their application as gate dielectrics in MOS devices is promising. Finally, it has been demonstrated that by reducing the organic content of SOG-based thin films, it is possible to obtain MOS devices with better electrical properties.  相似文献   
134.
The development of new glassy materials is key for addressing major global challenges in energy, medicine, and advanced communications systems. For example, thin, flexible, and large-area glass substrates will play an enabling role in the development of flexible displays, roll-to-roll processing of solar cells, next-generation touch-screen devices, and encapsulation of organic semiconductors. The main drawback of glass and its limitation for these applications is its brittle fracture behavior, especially in the presence of surface flaws, which can significantly reduce the practical strength of a glass product. Hence, the design of new ultrastrong glassy materials and strengthening techniques is of crucial importance. The main issues regarding glass strength are discussed, with an emphasis on the underlying microscopic mechanisms that are responsible for mechanical properties. The relationship among elastic properties and fracture behavior is also addressed, focusing on both oxide and metallic glasses. From a theoretical perspective, atomistic modeling of mechanical properties of glassy materials is considered. The topological origin of these properties is also discussed, including its relation to structural and chemical heterogeneities. Finally, comments are given on several toughening strategies for increasing the damage resistance of glass products.  相似文献   
135.
136.
Campylobacter spp., Salmonella enterica, and Escherichia coli O157:H7 isolated from 898 faecal, 43 sewage, and 342 surface water samples from the Oldman River were characterized using bacterial subtyping methods in order to investigate potential sources of contamination of the watershed. Among these pathogens, Campylobacter spp. were the most frequently isolated from faecal, sewage, and surface water samples (266/895, 11/43, and 91/342, respectively), followed by Salmonella (67/898, 8/43, and 29/342, respectively), and E. coli O157:H7 (16/898, 2/43, and 8/342, respectively). Salmonella Rubislaw was the most common serovar isolated from water. This serovar was also isolated from two wild bird species. Most other serovars isolated from water were either not isolated from animals or were isolated from multiple species. E. coli O157:H7 was predominantly isolated from cattle. The most common phage-types of this pathogen from cattle were also the most common among water isolates, and there were exact pulsed field gel electrophoresis and comparative genomic fingerprint matches between cattle, sewage, and water isolates. Campylobacters were commonly isolated from surface waters and faeces from most animal species. Restriction fragment length polymorphism of the Campylobacter flaA gene identified several location and host species-specific (cattle, goose, pig) fingerprints. Molecular subtyping of these bacterial pathogens shows considerable promise as a tool for determining the sources of faecal pollution of water.  相似文献   
137.
Iron oxide nanoparticles are formidable multifunctional systems capable of contrast enhancement in magnetic resonance imaging, guidance under remote fields, heat generation, and biodegradation. Yet, this potential is underutilized in that each function manifests at different nanoparticle sizes. Here, sub‐micrometer discoidal magnetic nanoconstructs are realized by confining 5 nm ultra‐small super‐paramagnetic iron oxide nanoparticles (USPIOs) within two different mesoporous structures, made out of silicon and polymers. These nanoconstructs exhibit transversal relaxivities up to ≈10 times (r 2 ≈ 835 mm ?1 s?1) higher than conventional USPIOs and, under external magnetic fields, collectively cooperate to amplify tumor accumulation. The boost in r 2 relaxivity arises from the formation of mesoscopic USPIO clusters within the porous matrix, inducing a local reduction in water molecule mobility as demonstrated via molecular dynamics simulations. The cooperative accumulation under static magnetic field derives from the large amount of iron that can be loaded per nanoconstuct (up to ≈65 fg) and the consequential generation of significant inter‐particle magnetic dipole interactions. In tumor bearing mice, the silicon‐based nanoconstructs provide MRI contrast enhancement at much smaller doses of iron (≈0.5 mg of Fe kg?1 animal) as compared to current practice.  相似文献   
138.
Palmoplantar keratodermas (PPKs) are characterized by thickness of stratum corneum and epidermal hyperkeratosis localized in palms and soles. PPKs can be epidermolytic (EPPK) or non epidermolytic (NEPPK). Specific mutations of keratin 16 (K16) and keratin 1 (K1) have been associated to EPPK, and NEPPK. Cases of mosaicism in PPKs due to somatic keratin mutations have also been described in scientific literature. We evaluated a patient presenting hyperkeratosis localized monolaterally in the right palmar area, characterized by linear yellowish hyperkeratotic lesions following the Blaschko lines. No other relatives of the patient showed any dermatological disease. Light and confocal histological analysis confirmed the presence of epidermolityic hyperkeratosis. Genetic analysis performed demonstrates the heterozygous deletion NM_006121.4:r.274_472del for a total of 198 nucleotides, in KRT1 cDNA obtained by a palmar lesional skin biopsy, corresponding to the protein mutation NP_006112.3:p.Gly71_Gly137del. DNA extracted from peripheral blood lymphocytes did not display the presence of the mutation. These results suggest a somatic mutation causing an alteration in K1 N-terminal variable domain (V1). The deleted sequence involves the ISIS subdomain, containing a lysine residue already described as fundamental for epidermal transglutaminases in the crosslinking of IF cytoskeleton. Moreover, a computational analysis of the wild-type and V1-mutated K1/K10 keratin dimers, suggests an unusual interaction between these keratin filaments. The mutation taster in silico analysis also returned a high probability for a deleterious mutation. These data demonstrate once again the importance of the head domain (V1) of K1 in the formation of a functional keratinocyte cytoskeleton. Moreover, this is a further demonstration of the presence of somatic mutations arising in later stages of the embryogenesis, generating a mosaic phenotype.  相似文献   
139.
在意大利Aquafil公司与特伦托大学合作进行的科研工作的基础上,介绍和讨论了用于地毯和纺织品的新纤维的新的试验方法.此外,指出了各种创新的多种聚合物复合所得的结果.结果证实,由反应纺丝得到的多种聚合物的复合纤维,力学性质具有单值性.  相似文献   
140.
Diodes and diode strings in 90 nm and beyond technologies are investigated by measurement and device simulation. After a thorough calibration, the device simulator is utilised to achieve a better understanding and an enhanced device performance of diode strings under static and transient ESD conditions. Thereto, parasitic transistors and a so far neglected parasitic thyristor (SCR) in the diode string are regarded, exploited and optimised.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号