首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2853篇
  免费   160篇
  国内免费   30篇
电工技术   53篇
综合类   7篇
化学工业   816篇
金属工艺   85篇
机械仪表   122篇
建筑科学   115篇
矿业工程   12篇
能源动力   182篇
轻工业   184篇
水利工程   49篇
石油天然气   32篇
无线电   267篇
一般工业技术   454篇
冶金工业   98篇
原子能技术   20篇
自动化技术   547篇
  2024年   4篇
  2023年   53篇
  2022年   87篇
  2021年   192篇
  2020年   140篇
  2019年   194篇
  2018年   244篇
  2017年   202篇
  2016年   198篇
  2015年   127篇
  2014年   219篇
  2013年   312篇
  2012年   198篇
  2011年   223篇
  2010年   166篇
  2009年   120篇
  2008年   75篇
  2007年   40篇
  2006年   48篇
  2005年   30篇
  2004年   24篇
  2003年   16篇
  2002年   11篇
  2001年   6篇
  2000年   13篇
  1999年   4篇
  1998年   15篇
  1997年   2篇
  1996年   7篇
  1995年   9篇
  1994年   3篇
  1993年   8篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1974年   2篇
  1973年   1篇
排序方式: 共有3043条查询结果,搜索用时 15 毫秒
121.
This paper reports the first integration of laser‐etched polycrystalline diamond microchannels with template‐fabricated microporous copper for extreme convective boiling in a composite heat sink for power electronics and energy conversion. Diamond offers the highest thermal conductivity near room temperature, and enables aggressive heat spreading along triangular channel walls with 1:1 aspect ratio. Conformally coated porous copper with thickness 25 µm and 5 µm pore size optimizes fluid and heat transport for convective boiling within the diamond channels. Data reported here include 1280 W cm?2 of heat removal from 0.7 cm2 surface area with temperature rise beyond fluid saturation less than 21 K, corresponding to 6.3 × 105 W m?2 K?1. This heat sink has the potential to dissipate much larger localized heat loads with small temperature nonuniformity (5 kW cm?2 over 200 µm × 200 µm with <3 K temperature difference). A microfluidic manifold assures uniform distribution of liquid over the heat sink surface with negligible pumping power requirements (e.g., <1.4 × 10?4 of the thermal power dissipated). This breakthrough integration of functional materials and the resulting experimental data set a very high bar for microfluidic heat removal.  相似文献   
122.
We present the first characterization of a micromachined silicon rectangular waveguide at 400GHz. The silicon waveguide has an average loss of 0.086dB/mm for a range of 350-460GHz. The waveguides are formed using well known microfabrication techniques and demonstrate a successful first step towards the use of silicon waveguides as a viable option for THz systems.  相似文献   
123.
In this paper, a hybrid method is proposed for multi-channel electroencephalograms (EEG) signal compression. This new method takes advantage of two different compression techniques: fractal and wavelet-based coding. First, an effective decorrelation is performed through the principal component analysis of different channels to efficiently compress the multi-channel EEG data. Then, the decorrelated EEG signal is decomposed using wavelet packet transform (WPT). Finally, fractal encoding is applied to the low frequency coefficients of WPT, and a modified wavelet-based coding is used for coding the remaining high frequency coefficients. This new method provides improved compression results as compared to the wavelet and fractal compression methods.  相似文献   
124.
The microplastic particles (MPs) and effects of storage time and direct sunlight on the MPs in bottled mineral waters were investigated by three experiments conditions. The mean MPs concentration was 63.9 ± 38.9 MPs/L. Pellet forms, white/yellow colour and sizes < 100 μm were predominant MPs, accounted for 35.3%, 51% and 60.2% of the total MPs, respectively. Storage of bottled water under darkness and sunlight caused an increase of 1.5% and 2.5% of MPs pollution, respectively. Also, the estimated daily intake (EDI) of MPs was 2.1, 6.4 and 9.6 MPs/kg BW.day for adults, children and infants, respectively. It is concluded that high storage time and direct sunlight may lead to a greater MPs pollution in mineral water and also high human intake through drinking bottled water. Therefore, it is suggested to reduce the expiry date of the bottled mineral water and avoid sunlight contact before consumption.  相似文献   
125.
Detection of hydrogen by sensors are significant for improvement and safe usage of hydrogen gas as an energy source. In this paper, the application of the MEMS gas sensor for detection of hydrogen gas is numerically studied to develop the application of this device in different industrial applications. The flow feature and force generation mechanism inside a rectangular enclosure with heat and cold arms as the non-isothermal walls are inclusively discussed. In this study, the pressure of hydrogen is varied from 62 to 1500 pa correspond to Knudsen number from 0.1 to 4.5 to investigate all characteristics of the thermal-driven force inside the MEMS sensor. In order to simulate a rarefied gas inside the micro gas detector, Boltzmann equations are applied to obtain high precision results. To solve these equations, Direct Simulation Monte Carlo (DSMC) approach is used as a robust method for the non-equilibrium flow field. The effects of length, thickness and temperature of arms are comprehensively investigated in different ambient pressures. In addition, the effect of various hydrogen concentrations on the Knudsen force is studied. Our findings show that maximum Knudsen force occurs at P = 387 pressure and intensifies when the length of the arms is increased from 50 μm to 150 μm. In addition, the obtained results demonstrate that the generated force is highly sensitive to hydrogen gas species and this enables device for detection of hydrogen gas.  相似文献   
126.
In this study, a microchannel reactor was designed, its catalytic performance in dry methane reforming (DRM) was assessed, and the results were compared with those observed in a conventional fixed bed reactor. The catalyst was prepared in two forms, including catalyst pellets and catalyst-coated plate. The microchannel reactor had thin films of Ni/Al2O3 coated on stainless steel substrate via radio frequency (RF) magnetron sputtering method in various sputtering times. The fall-off rate of the catalyst-coated plates can be neglected after putting the plates under the high-temperature DRM reaction, due to the formation of firm active catalyst coatings. The performance of the samples was evaluated at different temperatures from 700 to 800 °C, at P = 1 atm, with a CH4:CO2 ratio of 1. The results of XRD showed that with increasing the sputtering time, there was an increase in crystallinity. As observed in FESEM images, the sample prepared with 5 min of sputtering was dense and uniform. The results of EDX not only proved the dispersion of the samples observed in XRD and FESEM analysis, but also verified the presence of the utilized elements. The temperature of 800 °C and the sample with 5 min sputtering time were selected as the optimum condition that provided the best performance. Catalytic performance was investigated in fixed bed reactor at the same GHSV; based on the results there were no significant conversions in the fixed bed reactor. The results of the stability test in the microchannel reactor showed a good performance during 30 h on stream. Therefore, Ni/Al2O3 thin films had a satisfactory performance in the designed microchannel. Our study shows that this type of reactor has many advantages in terms of performance, compactness, and economic concerns.  相似文献   
127.
In present study, for the first time, ZnO nanoparticles have been synthesized via a simple, novel, solvent and template free solid-state thermal decomposition of the mixed Zn(NO3)·6H2O and cochineal powders as a novel starting reagent at 600?°C for 3 h. The as-prepared product was analyzed by XRD, EDS, SEM, TEM, FT-IR and DRS. Besides, the effect of cochineal powder on the morphology and particle size of ZnO nanoparticles was investigated. The results exhibited that cochineal powder prevents the sintering of nanoparticles and leads to formation of uniform particles. Moreover, the efficiency of ZnO nanoparticles as a photocatalyst for the decolorization of methylene orange (MO) has been evaluated and 90% degradation of MO was obtained after 120 min.  相似文献   
128.
In the present study, the microencapsulated phase change material with palmitic acid as core and inorganic SiO2 shell was successfully fabricated by a sol–gel method in alkaline medium via sodium silicate precursor. The chemical compositions, crystalloid phase, microstructure and morphology of PA@SiO2 microcapsule were studied by Fourier transform infrared spectroscopy, X-ray diffractometer, scanning electron microscopy and transmission electron microscopy. Differential scanning calorimetry and thermogravimetric analysis were used to determine the thermal properties and thermal stability of microcapsules, respectively. According to the XRD and FT-IR results, all the characteristic peaks of PA and SiO2 were observed and there is no chemical reaction between them. Scanning electron microscopy images indicated that the microcapsule synthesized in pH 11 had a perfect spherical shape with smooth surfaces compared with other samples, and transmission electron microscopy images confirm that the PA have been well encapsulated by SiO2. Differential scanning calorimetry analysis showed that the microcapsules indicated similar phase change behaviors as those of pristine PA, which melt at 67.2?°C with a latent heat of 111.2 J/g and freezing at 56.5?°C with a latent heat of 103.2 J/g. TGA analysis indicated that the thermal stability of the PA was also improved due to the protection of SiO2 shell toward the encapsulated PA.  相似文献   
129.
This paper reports a novel processing route for producing AgO2/GrO nanocomposites by hydrothermal method. AgO2/GrO nanocomposites as semiconductor materials have been synthesized via a facile one-step process using AgNO3 and glucose as starting reagents. We investigated the influence of the thermal decomposition temperature and reaction time, on the morphology and the particle size of AgO2/GrO nanocomposites. The AgO2/GrO nanocomposites were characterized by FT-IR, UV–Vis spectra, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. The obtained results exhibited that the synthesized nano product by calcining for 4 h showed excellent uniformity and quality.  相似文献   
130.
The relative performance of different potential liquid oxygen carriers within a novel system that can be configured for either chemical looping gasification or combustion is assessed. The parameters considered here are the melting temperature, the Gibbs free energy, reaction enthalpy, exergy and energy flows, syngas quality and temperature difference between the two reactors. Results show that lead, copper and antimony oxides are meritorious candidates for the proposed systems. Antimony oxide was found to offer strong potential for high quality syngas production because it has a reasonable oxygen mass ratio for gasification. A sufficiently low operating temperature to be compatible with concentrated solar thermal energy and a propensity to generate methane. In contrast, copper and lead oxides offer greater potential for liquid chemical looping combustion because they have higher oxygen mass ratio and a higher operating temperature, which enables better efficiency from a power plant. For all three metal oxides, the production of methane via the undesirable methanation reaction is less than 2% of the product gasses for all operating temperatures and an order of magnitude lower for lead.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号