首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5953篇
  免费   328篇
  国内免费   41篇
电工技术   79篇
综合类   21篇
化学工业   1653篇
金属工艺   125篇
机械仪表   220篇
建筑科学   165篇
矿业工程   4篇
能源动力   382篇
轻工业   619篇
水利工程   85篇
石油天然气   36篇
无线电   568篇
一般工业技术   1078篇
冶金工业   276篇
原子能技术   84篇
自动化技术   927篇
  2024年   69篇
  2023年   145篇
  2022年   335篇
  2021年   433篇
  2020年   335篇
  2019年   327篇
  2018年   360篇
  2017年   296篇
  2016年   324篇
  2015年   194篇
  2014年   323篇
  2013年   532篇
  2012年   305篇
  2011年   312篇
  2010年   277篇
  2009年   244篇
  2008年   166篇
  2007年   145篇
  2006年   132篇
  2005年   95篇
  2004年   73篇
  2003年   71篇
  2002年   55篇
  2001年   42篇
  2000年   36篇
  1999年   37篇
  1998年   69篇
  1997年   59篇
  1996年   42篇
  1995年   53篇
  1994年   24篇
  1993年   34篇
  1992年   30篇
  1991年   25篇
  1990年   24篇
  1989年   22篇
  1988年   15篇
  1987年   30篇
  1986年   30篇
  1985年   22篇
  1984年   30篇
  1983年   26篇
  1982年   16篇
  1981年   8篇
  1980年   14篇
  1979年   13篇
  1978年   12篇
  1977年   11篇
  1976年   14篇
  1975年   8篇
排序方式: 共有6322条查询结果,搜索用时 15 毫秒
51.
52.
In the present work, a mathematical model was developed based on finite difference method to predict the microporosity distribution in A356 aluminum alloy casting. Heat, mass, and gas conservation equations were solved in this model. Moreover, Darcy’s equation was considered in the mushy zone. Results show that the distribution and concentration of microporosities in cast parts vary with both cooling rate and initial gas content. Simulation results were compared with experimental data where proportionally good agreement with experimental results was found. Finally, a complex cast part was simulated presenting the ability of the model to predict the porosities in industrial cast parts.  相似文献   
53.
The location-routing problem (LRP) is a relatively new research area within location analysis that concerns simultaneously both the problems of location of facilities and routing of vehicles among the established facilities and the demand points. In this work, we address the capacitated LRP with probabilistic travel times, which may arise in many practical contexts in logistics and supply chain management, and present some bi-objective mathematical programming formulations to model the problem using different stochastic programming approaches. The first objective is to minimize the overall system-wide costs, while the second objective concerns minimization of the maximum delivery time to the customers. In all the cases, the deterministic equivalents of the stochastic models have been extracted. To solve the resulted models, a variable neighborhood descent-based heuristic is proposed and finally computational study is performed and numerical results are reported.  相似文献   
54.
A series of experiments were conducted to produce carbon molecular sieves (CMS) through carbon deposition from a locally available palm shell of Tenera type for separating gaseous mixtures. The process involves three stages; carbonization, physical activation with steam, and carbon deposition by using benzene cracking technique. Carbonization of the dried palm shells was occurred at 900°C for duration of 1 h followed by steam activation at 830°C for 30–420 min to obtain activated carbons with different degree of burn-offs. The highest micropore volume of activated carbon obtained at 53.2% burn-off was used as a precursor for CMS production. Subsequent carbon deposition of the activated sample at temperature range from 600 to 900°C for 30 min has resulted in a series of CMSs with different selectivities of CO2/CH4 and O2/N2. The kinetic adsorption isotherm of CO2, CH4, O2 and N2 at room temperature also presented in this work.  相似文献   
55.
A new type of rigid polyurethane foam was produced by incorporating oxazolidone heterocyclic rings on to polyurethane backbones. Epoxidized diethanolamides were synthesized by reacting palm oil blends of epoxidized palm olein and refined bleached deodorized palm kernel olein with diethanolamine to produce rigid polyurethane foams. Epoxides, retained in the diethanolamides, reacted with isocyanate during foam production in the presence of AlCl3–THF complex catalyst to form oxazolidone linkages in the polyurethane network. The carbonyl stretch of oxazolidone was identified at 1,750 cm−1 through Fourier Transform Infra Red analysis. Chemical modifications of the polyurethane network also improved the thermal and mechanical properties of the foams. In addition, isocyanate index 1.4 was determined to be the most suitable in the production of foams from this newly synthesized epoxidized diethanolamides.  相似文献   
56.
The object of this study was to review the developments taking place during 1990–2005 regarding the use of quaternary ammonium salts as dye fixing agents for improving the fastness properties of anionic dyes on cellulose fibres. As far as fastness properties are concerned, this review is restricted only to fastness to light, washing and water treatments.  相似文献   
57.
Shape optimization of a staggered herringbone groove micromixer using three-dimensional Navier-Stokes analysis has been carried out. The analysis of the degree of mixing is performed by the calculation of spatial data statistics. The calculation of the variance of the mass fraction at various nodes on a plane in the channel is used to quantify mixing. A numerical optimization technique is applied to optimize the shape of the grooves on a single wall of the channel. Two design variables, namely, the ratio of the groove depth to channel height ratio and the angle of the groove, are selected for optimization. A mixing index is used as the objective function. The results of the optimization show that the mixing is very sensitive to the shape of the groove which can be used in controlling the mixing in microdevices. The mixing is affected by the depth of the groove much more than the angle of the groove.  相似文献   
58.
This study focuses on the effect of isocyanate (NCO)/hydroxyl (OH) group ratios and chemical modification of oil palm empty fruit bunches (EFBs) with toluene diisocyanate (TDI) and hexamethylene diisocyanate (HMDI) on the mechanical properties of EFB–polyurethane (PU) composites. The tensile, flexural, and impact properties are affected by the NCO/OH ratios. The tensile strengths, flexural strengths, and toughness increase as the NCO/OH increases; however, the modulus decreases. The reduction in the modulus is attributable to the increased flexibility of the PU linkages. Chemical modification of the EFBs increases the tensile strength, flexural strength, and toughness; however, the modulus is lowered as the percentage of treated EFB is increased. Impact strength results show that the strength increases as the NCO/OH ratio is increased. At NCO/OH ratios of 1.0 and 1.1, the composites with HMDI‐treated fibers exhibit higher impact strength than those with TDI‐treated and untreated fibers, respectively. This may be due to the longer and more flexible chain length of HMDI as compared to TDI, which enables the composites to absorb more energy before failure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
59.
Blending of two polymers in solution is a simple and cost‐effective technique to improve upon the physical and mechanical properties of the component polymers through synergism. To obtain maximum synergy in their properties, the component polymers should be miscible with each other on molecular scale. Polymer blends of complex physicomechanical properties are being actively investigated. Poly(methacrylic acid) (PMAA), a commercial polymer, yields transparent, hard, brittle, and water‐sensitive films. It has been blended with natural polymers like dextran, collagen, and gelatin to obtain films with improved physical and mechanical characteristics. Polyesteramides, which are easily synthesized from vegetable seeds oil, a sustainable resource, have found application in surface coatings. These oligomeric products do not make free standing films in the ambient condition. The polyesteramides from vegetable seeds oil can be used to obtain blend with PMMA of improved mechanical and water absorption properties. In this study, linseed oil polyesteramide (LOPEA) and dehydrated castor oil polyesteramide (DCPEA), the source oils with different unsaturation in their fatty acid chains, were blended with PMAA through mixing in solution in the ratio DCPEA/LOPEA: PMAA as 80/20, 70/30, 60/40, 50/50, 40/60, 30/70, and 20/80. In the first instance, the miscibility of the two components was investigated in solution by viscosity and ultrasonic measurements and in solid phase through differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Moisture absorption by the blend was also studied. DCPEA and LOPEA show immiscibility with PMAA in solution phase while LOPEA with more unsaturation in the fatty acid chain of the oil was found more immiscible than DCPEA. DCPEA shows a narrow miscibility window in the solid phase while LOPEA was found immiscible with PMAA in the solid phase too. Uptake of moisture was found to be markedly reduced in the blends of DCPEA/LOPEA with PMAA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1367–1374, 2007:  相似文献   
60.
In the present work, the potential of a nano‐porous membrane for predicting the separation of lower hydrocarbons from natural gas by capillary condensation was explored. While a gas permeates through a capillary at a suitable pressure, the adsorbed layer may attain a thickness enough to fill the entire membrane pore. Poiseuille flow of the condensed phase follows. Our computed results have established that for a passage through a nano‐porous membrane, gas having lower condensation pressure condenses in the pores at a pressure which is about an order of magnitude lower than its vapor pressure at the concerned temperature. In the case of propane/methane and butane/methane binary mixtures, propane and butane are preferentially condensed and permeation rates up to 700 g mol/m2 s bar for propane and 600 g mol/m2 s bar for butane have been achieved at a temperature lower than the critical temperature of the permeating species and higher than the critical temperature of the non‐permeating species. Since methane has a much lower critical temperature than both propane and butane, it gets physically dissolved in the condensed phase of propane, butane in the case of propane/methane and butane/methane binary mixtures, respectively. An equation of state (EOS) approach has been adopted to calculate the fugacity of methane in the gas, as well as in the condensed phase, in order to estimate its solubility. The Peng‐Robinson equation of state was used. Computation of the separation factor for methane/propane and methane/butane was performed over a wide range of temperature, pressure, and gas composition. The separation factor which is expectedly a function of these variables ranged from 0.3–75 for methane/propane and 0.7–140 for methane/butane binary mixtures. It has been established that an acceptable degree of separation is achievable at moderate pressure and at low temperature for the removal of propane and butane from natural gas. The results have the potential to be used for further refinement and optimization of the process conditions so that this strategy can be exploited for large‐scale removal of lower hydrocarbon from natural gas at a low cost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号