首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   25篇
电工技术   5篇
化学工业   77篇
金属工艺   14篇
机械仪表   21篇
建筑科学   6篇
能源动力   11篇
轻工业   13篇
水利工程   5篇
石油天然气   1篇
无线电   44篇
一般工业技术   63篇
冶金工业   13篇
原子能技术   4篇
自动化技术   36篇
  2023年   5篇
  2022年   5篇
  2021年   6篇
  2020年   6篇
  2019年   6篇
  2018年   12篇
  2017年   9篇
  2016年   14篇
  2015年   4篇
  2014年   13篇
  2013年   27篇
  2012年   21篇
  2011年   20篇
  2010年   16篇
  2009年   15篇
  2008年   16篇
  2007年   14篇
  2006年   13篇
  2005年   12篇
  2004年   13篇
  2003年   10篇
  2002年   9篇
  2001年   8篇
  2000年   6篇
  1999年   4篇
  1998年   10篇
  1997年   6篇
  1996年   6篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有313条查询结果,搜索用时 31 毫秒
91.
The permeations of pure CO2 and N2 gases and a binary gas mixture of CO2/N2 (20/80) through poly(dimethylsiloxane) (PDMS) membrane were carried out by the new permeation apparatus. The permeation and separation behaviors were characterized in terms of transport parameters, namely, permeability, diffusion, and solubility coefficients which were precisely determined by the continuous‐flow technique. In the permeation of the pure gases, feed pressure and temperature affected the solubility coefficients of CO2 and N2 in opposite ways, respectively; increasing feed pressure positively affects CO2 solubility coefficient and negatively affects N2 solubility coefficient, whereas increasing temperature favors only N2 sorption. In the permeation of the mixed gas, mass transport was observed to be affected mainly by the coupling in sorption, and the coupling was analyzed by a newly defined parameter permeation ratio. The coupling effects have been investigated on the permeation and separation behaviors in the permeation of the mixed gas varying temperature and feed pressure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 179–189, 2000  相似文献   
92.
Soybean pods contain abundant dietary fiber and phytochemicals, including phenolic compounds. However, few bioactivity studies have been conducted using soybean pods, while soybean leaves, and seeds have been well characterized. In this study, the effect of gamma irradiation on the physiological properties of soybean pod extract (SPE) was investigated. SPE was irradiated at 0, 5, 10, and 20 kGy, and the phenolic compound concentration and antioxidant activity were investigated. The total phenolic compounds were increased and total flavonoids were decreased as the irradiation dose increased. Antioxidant activity, which was measured using the 2,2‐diphenyl‐1‐picrylhydrazyl, 2,2′‐azino‐bis‐3‐ethylbenzothiazoline‐6‐sulphonic acid, and 2‐thiobarbituric acid reactive substances assays, improved as the irradiation dose increased. In addition, cancer cell viability, and tyrosinase activity were reduced by gamma irradiation. These results show that soybean pods can be utilized as functional food materials after gamma irradiation.

Practical applications

Gamma irradiation modified the chemical composition of soybean pod extract (SPE). Such irradiation improved the antioxidant, anti‐pigmentation, and anti‐carcinogenesis effects compared to those of control SPE. Therefore, this material, previously considered a byproduct of soybean processing, can be used as a functional food to prevent such disorders as oxidative damage, cancer, and hyperpigmentation.  相似文献   
93.
One- or two-carbon (C1 or C2) compounds have been considered attractive substrates because they are inexpensive and abundant. Methanol and ethanol are representative C1 and C2 compounds, which can be used as bio-renewable platform feedstocks for the biotechnological production of value-added natural chemicals. Methanol-derived formaldehyde and ethanol-derived acetaldehyde can be converted to 3-hydroxypropanal (3-HPA) via aldol condensation. 3-HPA is used in food preservation and as a precursor for 3-hydroxypropionic acid and 1,3-propanediol that are starting materials for manufacturing biocompatible plastic and polytrimethylene terephthalate. In this study, 3-HPA was biosynthesized from formaldehyde and acetaldehyde using deoxyribose-5-phosphate aldolase from Thermotoga maritima (DERATma) and cloned and expressed in Escherichia coli for 3-HPA production. Under optimum conditions, DERATma produced 7 mM 3-HPA from 25 mM substrate (formaldehyde and acetaldehyde) for 60 min with 520 mg/L/h productivity. To demonstrate the one-pot 3-HPA production from methanol and ethanol, we used methanol dehydrogenase from Lysinibacillus xylanilyticus (MDHLx) and DERATma. One-pot 3-HPA production via aldol condensation of formaldehyde and acetaldehyde from methanol and ethanol, respectively, was investigated under optimized reaction conditions. This is the first report on 3-HPA production from inexpensive alcohol substrates (methanol and ethanol) by cascade reaction using DERATma and MDHLx.  相似文献   
94.
For effective toluene degradation, the effects of a nitrogen source were studied with Pseudomonas putida BZ912, which was isolated from crude oil contaminated soil and is capable of degrading VOC. Two nitrogen sources, ammonia and nitrate, showed different effects on specific growth rates (0.25 hr−1 and 0.12 hr−1, respectively), biomass yields (0.56 vs. 0.39) and specific toluene degradation rates (0.51 hr−1 vs. 0.26 hr−1). Under the resting cell conditions, the cells pre-cultured in the ammonia-containing medium showed higher specific toluene degradation rate than that in nitrate-containing medium (0.045 hr−1 vs. 0.038 hr−1). Ammonia as a nitrogen source was effective for degradation in high toluene concentration because high cellular biomass was accomplished. Nitrate showed slow growth rate compared to ammonia. The resting cell conditions demonstrated that it was able to degrade toluene efficiently without increasing biomass. These conditions could be a solution for degrading VOC after high cellular biomass was obtained in a biofilter. By changing the nitrogen source and the growth conditions according to the toluene concentration, the control of cell biomass and the desired removal capacity were accomplished.  相似文献   
95.
We have developed a novel activation technique for the conformal electroless deposition (ELD) of Cu on a SiO2 substrate modified with an organic self-assembled monolayer. The SiO2 substrate was modified with amine groups using 3-aminopropyltriethoxysilane and Au nanoparticles (AuNPs) to form a uniform, continuous catalyst for ELD. The Au catalytic layer formed on the amine-SiO2 substrate was stabilized by electrostatic interactions between the positively charged protonated-amine self-assembled monolayer (SAM) and negatively charged AuNPs. Cu films were then electrolessly deposited on Au-catalyzed SiO2 substrates. The Cu seed layer formed by this method showed a highly conformal and continuous structure. Cu electrodeposition on the 60-nm trench was demonstrated using an acid cupric sulfate electrolyte containing chloride, polyethylene glycol 4000 and bis(3-sulfopropyl)disulfide. The resulting electroplated Cu showed excellent filling capability and no voids or other defects were observed in a 60-nm trench pattern.  相似文献   
96.
We successfully introduced peroxide groups onto the surface of PU(Polyurethane) foam(10 PPI) through one atmospheric pressure plasma treatment and sequentially grafted PAAc(poly(acrylic acid)) on the surface of PU through radical copolymerization. The plasma treatment can generate large amount of peroxides on the surface of PU foam and the peroxide groups act as initiators for further grafting of PAAc in the monomer solution. To introduce large amount of peroxides on the surface of PU foam, we studied the effect of plasma rf-power and treatment time on the maximum grafting of PAAc. Through this study, we found that the optimum plasma treatment condition was the rf-power of 100 W and the treatment time of 100 s. On the other hand, we also studied the effect of graft reaction conditions such as temperature, monomer concentration and reaction time on the change of grafting degree (GD). The GD increased with increasing temperature and increased with reaction time before it leveled off at 3 h after reaction started. At low concentration of AAc, the GD was very low but it showed a maximum at the monomer concentration between 60 and 70%. The surface of the modified PU foam was qualitatively and quantitatively analyzed through the use of FT-IR and weight measurement, respectively. We also observed the surface change before and after plasma induced graft co-polymerization through photo and SEM analysis. Finally, we confirmed that the PU foams grafted with PAAc successfully immobilized lysozyme and other proteins from hen egg white.  相似文献   
97.
98.
The present study was aimed to treat the dairy wastewater by using anaerobic and solar photocatalytic oxidation methods. The anaerobic treatment was carried out in a laboratory scale hybrid upflow anaerobic sludge blanket reactor (HUASB) with a working volume of 5.9 L. It was operated at organic loading rate (OLR) varying from 8 to 20 kg COD/m3 day for a period of 110 days. The maximum loading rate of the anaerobic reactor was found to be 19.2 kg COD/m3 day and the corresponding chemical oxygen demand (COD) removal at this OLR was 84%. The anaerobically treated wastewater at an OLR of 19.2 kg COD/m3 day was subjected to secondary solar photocatalytic oxidation treatment. The optimum pH and catalyst loading for the solar photochemical oxidation was found to be 5 and 300 mg/L, respectively. The secondary solar photocatalytic oxidation using TiO2 removed 62% of the COD from primary anaerobic treatment. Integration of anaerobic and solar photocatalytic treatment resulted in 95% removal of COD from the dairy wastewater. The findings suggest that anaerobic treatment followed by solar photo catalytic oxidation would be a promising alternative for the treatment of dairy wastewater.  相似文献   
99.
The thiophosphinic amide 2 was prepared in 68 % yield by the reaction of 2,2‐dimethyl‐1,3‐propanediamine with diisopropylchlorophosphine followed by the addition of sulfur. Attachment of the proligand 2 to zirconium was achieved by direct metalation with Zr(NMe2)4 in benzene‐d6 or toluene‐d8 to afford complex 3 via elimination of dimethylamine. The neutral Zr(IV) complex 3 has been shown to be an effective precatalyst for intramolecular alkene hydroaminations that provide cyclic amines in good to excellent yields. A variety of chiral ligands ( 20 , 22 , 24 , and 25 – 30 ) were prepared for asymmetric internal alkene hydroaminations. Metalation of chiral ligands to yttrium was accomplished with Y[N(TMS)2]3 in benzene‐d6 or toluene‐d8 to give complexes. Treatment of 7 with 5 mol % of 33 in benzene‐d6 (25 °C, 18 h) or toluene‐d8 (25 °C, 15 h) afforded 2,4,4‐trimethylpyrrolidine 14 in 95 % yield (61 % ee).  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号