首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   785篇
  免费   43篇
  国内免费   9篇
电工技术   5篇
综合类   2篇
化学工业   253篇
金属工艺   17篇
机械仪表   22篇
建筑科学   48篇
矿业工程   2篇
能源动力   72篇
轻工业   64篇
水利工程   20篇
石油天然气   9篇
无线电   46篇
一般工业技术   144篇
冶金工业   42篇
原子能技术   3篇
自动化技术   88篇
  2024年   7篇
  2023年   11篇
  2022年   31篇
  2021年   54篇
  2020年   38篇
  2019年   41篇
  2018年   58篇
  2017年   70篇
  2016年   43篇
  2015年   22篇
  2014年   44篇
  2013年   88篇
  2012年   63篇
  2011年   64篇
  2010年   26篇
  2009年   33篇
  2008年   29篇
  2007年   16篇
  2006年   15篇
  2005年   11篇
  2004年   13篇
  2003年   14篇
  2002年   2篇
  1998年   12篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   6篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1970年   1篇
排序方式: 共有837条查询结果,搜索用时 15 毫秒
831.
Unsaturated polyester/styrene (UP ) resin was filled with nanodiamonds (NDs ) containing carboxyl and methacrylate functionalities using mechanical mixing. Field emission SEM exhibited a uniform dispersion of tightly bound aggregates of nanosized spherical NDs with good interfacial interaction. Rheological measurements exhibited a step increment in the shear viscosity of a UP /ND suspension at 0.6 wt% ND resembling a percolation state at this loading. Shear viscosity data supported by dynamic mechanical analysis results suggested the development of effective ND particles in which ND aggregates were covered by only polyester macromolecules. Accordingly, the morphology of UP /ND composites approached a quasi‐percolation state at 0.6 wt% in which effective ND particles were connected thoroughly, instead of direct ND ?ND contact, forming a co‐continuous polyester phase covering the ND particles. Based on such morphology, DSC and Fourier transform infrared analysis suggested the development of heterogeneous microgels in cured UP resin containing NDs which in turn governed the overall mechanical properties of the composites. © 2017 Society of Chemical Industry  相似文献   
832.
Nanofiber yarns with twisted and continuous structures have potential applications in fabrication of complicated structures such as surgical suture yarns, artificial blood vessels, and tissue scaffolds. The objective of this article is to characterize the tensile fatigue behavior of continuous Polyamide 66 (PA66) nanofiber yarns produced by electrospinning with three different twist levels. Morphology and tensile properties of yarns were obtained under static tensile loading and after fatigue loading. Results showed that tensile properties and yarn diameter were dependent on the twist level. Yarns had nonlinear time‐independent stress–strain behavior under the monotonic loading rates between 10 and 50 mm/min. Applying cyclic loading also positively affected the tensile properties of nanofiber yarns and changed their stress–strain behavior. Fatigue loading increased the crystallinity and alignment of nanofibers within the yarn structure, which could be interpreted as improved tensile strength and elastic modulus. POLYM. ENG. SCI., 55:1805–1811, 2015. © 2014 Society of Plastics Engineers  相似文献   
833.
834.
So far, several methods for myocardial tissue engineering have been developed to regenerate myocardium and even create contractile heart muscles. Among these approaches, hydrogel based methods have attracted much attention due to their ability to mimic the architecture of native extracellular matrix. Injectable hydrogels are a specific class of hydrogels which can be formed in situ by physical and/or chemical crosslinking. Generally, using these hydrogels is more advantageous because they are minimally (less) invasive in comparison with open surgery. Moreover, with respect to the fact that ‘myocardium is a conductive tissue’, utilization of conductive polymers for myocardial tissue engineering has demonstrated promising results. Both the injectable hydrogels and conductive polymers have some merits and demerits, but studies show that using a combination of them has prominently enhanced regeneration of the myocardium. In this review, the focus is on injectable hydrogels, conductive polymers and injectable conductive hydrogels for myocardial tissue engineering. © 2018 Society of Chemical Industry  相似文献   
835.
In this study, the effect of ceramic nanoparticles addition on the microstructure and texture of friction stir processed (FSP) copper has been investigated. For this purpose, two pure copper plates with and without Al2O3 nanoparticles were FSPed at rotational speed of 800 rpm and traverse speed of 100 mm min?1. Electron back scattered diffraction (EBSD) technique was employed in order to study the microstructure and texture of the fabricated samples. Based on the obtained results, considerable grain refinement by dynamic recrystallization (DRX) mechanism was observed in both specimens. However, Al2O3 inset led to evolution of ultrafine grained (UFG) structure with an average grain size of 0.7 µm. In addition, Al2O3 addition caused formation of lower twin boundaries and stronger texture components compared with the sample without ceramic reinforcements. The presence of nanoparticles increased the proportion of the continuous DRX mechanism (CDRX) compared to the discontinuous mechanism (DDRX) during grain structure formation.  相似文献   
836.
Poly(?‐caprolactone) (PCL) is explored in tissue engineering (TE) applications due to its biocompatibility, processability, and appropriate mechanical properties. However, its hydrophobic nature and lack of functional groups in its structure are major drawbacks of PCL‐based scaffolds limiting appropriate cell adhesion and proliferation. In this study, silk fibroin (SF) was immobilized on the surface of electrospun PCL nanofibers via covalent bonds in order to improve their hydrophilicity. To this end, the surface of PCL nanofibers was activated by ultraviolet (UV)–ozone irradiation followed by carboxylic functional groups immobilization on their surface by their immersion in acrylic acid under UV radiation and final immersion in SF solution. Furthermore, morphological, mechanical, contact angle, and Attenuated total reflection‐ Fourier transform infrared (ATR‐FTIR) were measured to assess the properties of the surface‐modified PCL nanofibers grafted with SF. ATR‐FTIR results confirmed the presence of SF on the surface of PCL nanofibers. Moreover, contact angle measurements of the PCL nanofibers grafted with SF showed the contact angle of zero indicating high hydrophilicity of modified nanofibers. In vitro cell culture studies using NIH 3T3 mouse fibroblasts confirmed enhanced cytocompatibility, cell adhesion, and proliferation of the SF‐treated PCL nanofibers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46684.  相似文献   
837.
Very fine alumina nanoparticles were loaded in novolac type phenolic resin (PF) using solution mixing method. The concentration of nanoalumina in PF was varied between 2.5 to 20 wt%. All the compounds were compression molded and then subjected to scanning electron microscopy (SEM), tensile, flexural, and dynamic mechanical analysis (DMA) tests. SEM analysis showed that the nanoalumina were dispersed uniformly at low concentrations, however, at high concentrations, dispersion was suppressed leading to agglomerates in the composites. Mechanical testing revealed that the nanoalumina had a great influence on the strength and stiffness of PF resin particularly at concentrations below 5 wt%. However, at concentration above 5 wt%, the stress concentrations were developed because of the formation of big aggregates that results in strength reduction. Theoretical analyses based on Pukanszky and micromechanical models of tensile modulus revealed that strong interfacial interaction and thick interphase region around the alumina nanoparticles is formed. DMA results suggested that the nanoalumina increased the crosslinking density of the PF resin, possibly around the interface region. It was also postulated that an apparent percolation state is established above 5 wt% loading of nanoalumina in which interphase region comes to contact before direct contact of particle leading to continuous interphase region. POLYM. COMPOS., 35:1285–1293, 2014. © 2013 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号