首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84576篇
  免费   1013篇
  国内免费   409篇
电工技术   792篇
综合类   2319篇
化学工业   11682篇
金属工艺   4804篇
机械仪表   3029篇
建筑科学   2199篇
矿业工程   563篇
能源动力   1204篇
轻工业   3678篇
水利工程   1285篇
石油天然气   354篇
无线电   9309篇
一般工业技术   16414篇
冶金工业   2646篇
原子能技术   261篇
自动化技术   25459篇
  2023年   19篇
  2022年   57篇
  2021年   73篇
  2020年   60篇
  2019年   77篇
  2018年   14495篇
  2017年   13412篇
  2016年   10009篇
  2015年   660篇
  2014年   306篇
  2013年   317篇
  2012年   3209篇
  2011年   9456篇
  2010年   8331篇
  2009年   5587篇
  2008年   6782篇
  2007年   7790篇
  2006年   125篇
  2005年   1224篇
  2004年   1133篇
  2003年   1177篇
  2002年   540篇
  2001年   97篇
  2000年   176篇
  1999年   57篇
  1998年   51篇
  1997年   29篇
  1996年   47篇
  1995年   12篇
  1994年   15篇
  1993年   14篇
  1992年   14篇
  1991年   23篇
  1988年   11篇
  1969年   24篇
  1968年   43篇
  1967年   33篇
  1966年   42篇
  1965年   44篇
  1964年   11篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
991.
Single point incremental forming: state-of-the-art and prospects   总被引:1,自引:0,他引:1  
Incremental sheet metal forming in general and Single Point Incremental Forming (SPIF) specifically have gone through a period of intensive development with growing attention from research institutes worldwide. The result of these efforts is significant progress in the understanding of the underlying forming mechanisms and opportunities as well as limitations associated with this category of flexible forming processes. Furthermore, creative process design efforts have enhanced the process capabilities and process planning methods. Also, simulation capabilities have evolved substantially. This review paper aims to provide an overview of the body of knowledge with respect to Single Point Incremental Forming. Without claiming to be exhaustive, each section aims for an up-to-date state-of-the-art review with corresponding conclusions on scientific progress and outlook on expected further developments.  相似文献   
992.
In this work, the numerical simulations and electromagnetic riveting (EMR) experiments were conducted to investigate microstructure evolution and the forming mechanism of adiabatic shear bands (ASBs). And the effects of rivet dies on microstructure distributions in formed heads and mechanical properties of riveted structures were systematically explored. The impact velocity and deformation distribution results demonstrated that the proposed numerical method was accurate and reliable. The simulation results showed the slope angle of rivet dies notably affected the plastic flow of materials, and then determined the microstructure distribution in formed heads. The combined effects of inhomogeneous plastic flow and thermal softening were accounted for the forming of ASBs. The formed heads had two obvious ASBs (upper and lower ASB) for the 40° rivet die and flat rivet die. The formed heads only had the lower ASB and no clear upper for the 60° rivet die and 80° rivet die. The pull-out test results showed that the specific rivet die could improve the mechanical properties of the EMR joints, which contribute to the engineering applications of EMR riveted structures.  相似文献   
993.
Laser shock forming (LSF) technology employs shock waves to form sheet metal into three-dimensional complex parts, and has application potential in manufacturing sheet metal parts. In this paper, the forming of 2024 aluminum alloy sheet with LSF was investigated through numerical and experimental methods. The numerical model was established with the commercial code ABAQUS/Explicit. The formed conical cup was obtained from the simulation, and validated by the experiment. With the verified numerical model, the deformation behaviors, including deformation velocity, sheet thickness variation and strain distribution, were studied. In addition, the influence of different shock wave pressures on the forming precision was also investigated. The experimental and numerical results show that the metal sheet loaded by shock wave can take the shape of the mold, and the non-uniform thickness is distributed in the formed cup. The investigations also display that there exists reverse deformation at the central region of deforming sheet owing to severe collision during LSF. In order to obtain formed part with better quality, an appropriate pressure of applied shock waves is required.  相似文献   
994.
Extracellular matrix (ECM) plays a very important role in regulating cell function and fate. It is highly desirable to fabricate biomimetic models to investigate the role of ECM in stem cell differentiation. In this study, arginine–glycine–aspartate (RGD)-modified gold nanoparticles (Au NPs) with tunable surface ligand density were prepared to mimic the ECM microenvironment. Their effect on osteogenic and adipogenic differentiation of human mesenchymal stem cells (MSCs) was investigated. The biomimetic Au NPs were taken up by MSCs in a ligand density-dependent manner. The biomimetic NPs with a high RGD density had an inhibitive effect on the alkaline phosphatase (ALP) activity, calcium deposition, and osteogenic marker gene expression of MSCs. Their effect on oil droplet formation and adipogenic marker gene expression was negative when RGD density was low, while their effect was promotive when RGD density was high. The biomimetic Au NPs regulated the osteogenic and adipogenic differentiation of MSCs mainly through affecting the focal adhesion and cytoskeleton. This study highlights the roles of biomimetic NPs on stem cell differentiation that could provide a meaningful strategy in fabricating functional biomaterials for tissue engineering and biomedical applications.
  相似文献   
995.
Advanced biocompatible and robust platforms equipped with diverse properties are highly required in biomedical imaging applications for the early detection of atherosclerotic vascular disease and cancers. Designing nanohybrids composed of noble metals and fluorescent materials is a new way to perform multimodal imaging to overcome the limitations of single-modality counterparts. Herein, we propose the novel design of a multimodal contrast agent; namely, an enhanced nanohybrid comprising gold nanorods (GNRs) and carbon dots (CDs) with silica (SiO2) as a bridge. The nanohybrid (GNR@SiO2@CD) construction is based on covalent bonding between SiO2 and the silane-functionalized CDs, which links the GNRs with the CDs to form typical core–shell units. The novel structure not only retains and even highly improves the optical properties of the GNRs and CDs, but also possesses superior imaging performance in both diffusion reflection (DR) and fluorescence lifetime imaging microscopy (FLIM) measurements compared with bare GNRs or fluorescence dyes and CDs. The superior bioimaging properties of the GNR@SiO2@CD nanohybrids were successfully exploited for in vitro DR and FLIM measurements of macrophages within tissue-like phantoms, paving the way toward a theranostic contrast agent for atherosclerosis and cancer.
  相似文献   
996.
Mixed transition metal oxides (MTMOs) have received intensive attention as promising anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). In this work, we demonstrate a facile one-step water-bath method for the preparation of graphene oxide (GO) decorated Fe2(MoO4)3 (FMO) microflower composite (FMO/GO), in which the FMO is constructed by numerous nanosheets. The resulting FMO/GO exhibits excellent electrochemical performances in both LIBs and SIBs. As the anode material for LIBs, the FMO/GO delivers a high capacity of 1,220 mAh·g–1 at 200 mA·g–1 after 50 cycles and a capacity of 685 mAh·g–1 at a high current density of 10 A·g–1. As the anode material for SIBs, the FMO/GO shows an initial discharge capacity of 571 mAh·g–1 at 100 mA·g–1, maintaining a discharge capacity of 307 mAh·g–1 after 100 cycles. The promising performance is attributed to the good electrical transport from the intimate contact between FMO and graphene oxide. This work indicates that the FMO/GO composite is a promising anode for high-performance lithium and sodium storage.
  相似文献   
997.
Herein, hierarchically structured SnO2 microspheres are designed and synthesized as an efficient anode material for lithium-ion batteries using hollow SnO2 nanoplates. Three-dimensionally ordered macroporous (3-DOM) SnO x -C microspheres synthesized by spray pyrolysis are transformed into hierarchically structured SnO2 microspheres by a two-step post-treatment process. Sulfidation produces hierarchically structured SnS-SnS2-C microspheres comprising tin sulfide nanoplate and carbon building blocks. A subsequent oxidation process produces SnO2 microspheres from hollow SnO2 nanoplate building blocks, which are formed by Kirkendall diffusion. The discharge capacity of the hierarchically structured SnO2 microspheres at a current density of 5 A·g?1 for the 600th cycle is 404 mA·h·g?1. The hierarchically structured SnO2 microspheres have reversible discharge capacities of 609 and 158 mA·h·g?1 at current densities of 0.5 and 30 A·g?1, respectively. The ultrafine nanosheets contain empty voids that allow excellent lithium-ion storage performance, even at high current densities.
  相似文献   
998.
The self-assembling properties, stability, and dynamics of hybrid nanocarriers (gold nanoparticles (AuNPs) functionalized with cysteine-based peptides) in solution are studied through a series of classical molecular dynamics simulations based on a recently parametrized reactive force field. The results reveal, at the atomic level, all the details regarding the peptide adsorption mechanisms, nanoparticle stabilization, aggregation, and sintering. The data confirm and explain the experimental findings and disclose aspects that cannot be scrutinized by experiments. The biomolecules are both chemisorbed and physisorbed; self-interactions of the adsorbates and formation of stable networks of interconnected molecules on the AuNP surfaces limit substrate reconstructions, protect the AuNPs from the action of the solvent, and prevent direct interactions of the gold surfaces. The possibility of agglomeration of the functionalized nanoparticles, compared with the sintering of the bare supports in a water solution, is demonstrated through relatively long simulations and fast steered dynamics. The analysis of the trajectories reveals that the AuNPs were well stabilized by the peptides. This prevented particle sintering and kept the particles far apart; however, part of their chains could form interconnections (crosslinks) between neighboring gold vehicles. The excellent agreement of these results with the literature confirm the reliability of the method and its potential application to the modeling of more complex materials relevant to the biomedical sector.
  相似文献   
999.
Nickel-iron layered double hydroxide (NiFe-LDH) nanosheets have shown optimal oxygen evolution reaction (OER) performance; however, the role of the intercalated ions in the OER activity remains unclear. In this work, we show that the activity of the NiFe-LDHs can be tailored by the intercalated anions with different redox potentials. The intercalation of anions with low redox potential (high reducing ability), such as hypophosphites, leads to NiFe-LDHs with low OER overpotential of 240 mV and a small Tafel slope of 36.9 mV/dec, whereas NiFe-LDHs intercalated with anions of high redox potential (low reducing ability), such as fluorion, show a high overpotential of 370 mV and a Tafel slope of 80.8 mV/dec. The OER activity shows a surprising linear correlation with the standard redox potential. Density functional theory calculations and X-ray photoelectron spectroscopy analysis indicate that the intercalated anions alter the electronic structure of metal atoms which exposed at the surface. Anions with low standard redox potential and strong reducing ability transfer more electrons to the hydroxide layers. This increases the electron density of the surface metal sites and stabilizes their high-valence states, whose formation is known as the critical step prior to the OER process.
  相似文献   
1000.
Owing to the strong affinity of thiols to Au and Ag, they are often employed to modify the surfaces of nanoparticles (NPs). Recently, these strong ligand-interface interactions have been employed to control NP growth, and this technique has emerged as a unique modulation strategy for creating unconventional plasmonic hybrid nanostructures. In these systems, the roles of the non-mercapto components of the thiol molecules and their structures are still unknown. Therefore, we herein present our investigation into this phenomenon. Primary amino (–NH2) groups in thiols are found to play a key role in regulating growth kinetics, i.e., in accelerating Ag deposition on Au NPs. The–NH2 groups are thought to bring Ag ions to the particle surface by coordinating to them, and thereby assist their reduction. The effect of molecular structure is non-trivial and thus provides the possibility of selective thiol detection. Based on the dependence of kinetic modulation on the non-mercapto components and molecular structures of molecules, we demonstrate the highly sensitive and specific detection of cysteine (limit of detection: 6 nM) in a mixture of 19 natural amino acids based on Ag growth on Au nanospheres. In addition, based on this modulation effect, we reveal the entrapping of chiral thiols within the growth layer through their plasmonic circular dichroism (PCD) responses. We believe that thiol-based growth regulation has great potential for creating plasmonic nanostructures with novel functionalities.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号