Telecommunication Systems - This paper analyzes the carrier-to-interference ratio (CIR) of the so-called shotgun cellular systems (SCSs) in $$\tau $$ dimensions ( $$\tau =1, 2,$$ and 3). SCSs are... 相似文献
Substitution of liquid electrolyte with solid-state electrolytes (SSEs) has emerged as a very urgent and challenging research area of rechargeable batteries. NASICON (Na3Zr2Si2PO12) is one of the most potential SSEs for Na-ion batteries due to its high ionic conductivity and low thermal expansion. It is proven that the ionic conductivity of NASICON can be improved to 10−3 S cm−1 by Sc-doping, of which the mechanism, however, has not been fully understood. Herein, a series of Na3+xScxZr2−xSi2PO12 (0 ≤ x ≤ 0.5) SSEs are prepared. To gain a deep insight into the ion transportation mechanism, synchrotron-based X-ray absorption spectroscopy (XAS) is employed to characterize the electronic structure, and solid-state nuclear magnetic resonance (SS-NMR) is used to analyze the dynamics. In this study, Sc is successfully doped into Na3Zr2Si2PO12 to substitute Zr atoms. The redistribution of sodium ions at certain specific sites is proven to be critical for sodium ion movement. For x ≤ 0.3, the promotion of sodium ion movement is attributed to sodium ion concentration increase at the Na2 sites and decrease at the Na1 and Na3 sites. For x > 0.3, the inhibition of sodium ion movement is due to the phase change from monoclinic to rhombohedral and an increasing impurity content. 相似文献
We studied the impact of voltage difference engineering in a silicon-on-insulator metal oxide semiconductor field-effect transistor (SOI-MOSFET) and compared the performance to that of a conventional SOI-MOSFET (C-SOI). Our structure, called a SIG-SOI MOSFET, includes main and side gates with an optimum voltage difference between them. The voltage difference leads to an inverted channel as an electrical drain extension under the side gate. This channel creates a stepped potential distribution along the channel that it cannot be seen in the C-SOI MOSFETs. The voltage difference controls the channel properly and two-dimensional two-carrier device simulations revealed lower threshold voltage variations, larger breakdown voltage, higher voltage gain, lower hot carrier effects, improved drain-induced barrier lowering, lower drain conductance, higher unilateral power gain, and lower leakage current compared to a C-SOI device. Thus, our proposed structure has higher performance than a typical C-SOI structure. 相似文献
Wireless sensor network has special features and many applications, which have attracted attention of many scientists. High energy consumption of these networks, as a drawback, can be reduced by a hierarchical routing algorithm. The proposed algorithm is based on the Low Energy Adaptive Clustering Hierarchy (LEACH) and Quadrant Cluster based LEACH (Q-LEACH) protocols. To reduce energy consumption and provide a more appropriate coverage, the network was divided into several regions and clusters were formed within each region. In selecting the cluster head (CH) in each round, the amount of residual energy and the distance from the center of each node were calculated by the base station (including the location and residual energy of each node) for all living nodes in each region. In this regard, the node with the largest value had the highest priority to be selected as the CH in each network region. The base station calculates the CH due to the lack of energy constraints and is also responsible for informing it throughout the network, which reduces the load consumption and tasks of nodes in the network. The information transfer steps in this protocol are similar to the LEACH protocol stages. To better evaluate the results, the proposed method was implemented with LEACH LEACH-SWDN, and Q-LEACH protocols using MATLAB software. The results showed better performance of the proposed method in network lifetime, first node death time, and the last node death time.
Wireless sensor networks (WSNs) are known to be highly energy-constrained and consequently lifetime is a critical metric in their design and implementation. Range assignment by adjusting the transmission powers of nodes create a energy-efficient topology for such networks while preserving other network issues, however, it may effect on the performance of other techniques such as network coding. This paper addresses the problem of lifetime optimization for WSNs where the network employs both range assignment and network-coding-based multicast. We formulate the problem and then reformulated it as convex optimization that offer a numerous theoretical or conceptual advantages. The proposed programming leads to efficient or distributed algorithms for solving the problem. Simulation results show that the proposed optimized mechanism decreases end-to-end delay and improve lifetime as compared by other conventional ones. 相似文献
International Journal of Wireless Information Networks - Dynamic variation of network topology in mobile ad hoc networks (MANET) forces network nodes to work together and rely on each other for... 相似文献
In this paper, the design of all two-input logic gates is presented by only a single-stage single electron box (SEB) for the first time. All gates are constructed based on a same circuit. We have used unique periodic characteristics of SEB to design these gates and present all two-input logic gates (monotonic/non-monotonic, symmetric/non-symmetric) by a single-stage design. In conventional monotonic devices, such as MOSFETs, implementing non-monotonic logic gates such as XOR and XNOR is impossible by only a single-stage design, and a multistage design is required which leads to more complexity, higher power consumption and less speed of the gates. We present qualitative design at first and then detailed designs are investigated and optimised by using our previous works. All designs are verified by a single electron simulator which shows correct operation of the gates. 相似文献