首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1960篇
  免费   101篇
  国内免费   7篇
电工技术   27篇
综合类   9篇
化学工业   663篇
金属工艺   40篇
机械仪表   69篇
建筑科学   48篇
能源动力   146篇
轻工业   261篇
水利工程   18篇
石油天然气   9篇
无线电   168篇
一般工业技术   319篇
冶金工业   35篇
原子能技术   4篇
自动化技术   252篇
  2024年   7篇
  2023年   41篇
  2022年   105篇
  2021年   142篇
  2020年   94篇
  2019年   99篇
  2018年   126篇
  2017年   110篇
  2016年   133篇
  2015年   92篇
  2014年   128篇
  2013年   216篇
  2012年   179篇
  2011年   157篇
  2010年   94篇
  2009年   72篇
  2008年   40篇
  2007年   31篇
  2006年   26篇
  2005年   25篇
  2004年   18篇
  2003年   19篇
  2002年   12篇
  2001年   18篇
  2000年   13篇
  1999年   5篇
  1998年   12篇
  1997年   2篇
  1996年   8篇
  1995年   10篇
  1994年   12篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有2068条查询结果,搜索用时 15 毫秒
91.
Of late, UV-curable products are gaining attention in the wood industry because of the effectiveness and efficiency of this method. UV-curable surface coatings are widely used because of their excellent properties and because they are environmentally friendly products. In this study, immobilized Candida antarctica lipase B was used to catalyze formation of liquid wax esters, such as adipate esters, via a solvent-free process. The adipate esters formed were then used as UV-curable reactants in the wood coating formulations, consisting of epoxy acrylate, additives, and a photoinitiator. The performance of the products was evaluated by coating them onto glass tiles (using gel content, hardness, and scratch resistance tests) and wood panels (using adhesion, impact, and heat resistance tests). The coated film from this formulation performed well during the evaluation tests. The gel content exhibited more than 90% polymerization, while the pendulum hardness gave a value of 55.25%. Both analyses were significant in determining the effect of irradiation cycles. A scratch test was also carried out to verify the resistance of the coating. The maximum weight load which can be resisted by the wax esters formulation is 4.5 N.  相似文献   
92.
The growth of SiOx nanowires and nanocakes on an Au-coated n-type-Silicon (100) substrate was achieved via carbothermal evaporation. The effects of the Au layer thickness and the rapid heating rate on the morphology of obtained SiOx nanowires were investigated. A broad emission band from 290 to 600 nm was observed in the photoluminescence (PL) spectrum of these nanowires. There are four PL peaks: one blue emission peak 485 nm (2.56 eV) two green bands centered at 502 nm (2.47 eV) and 524 nm (2.37 eV) for nanocakes and one ultraviolet emission peak at 350 nm (3.54 eV) and a hemisphere curve over the bluish green area taken for SiOx nanowires. These emissions may be related to the various oxygen defects and twofold coordinated silicon lone pair centers.  相似文献   
93.
The purpose of this research was to investigate the water absorption behavior and associated dimensional stability of kenaf‐polypropylene‐filled (PP/KF) composites. Composites with different fiber loadings, ranging from 0 to 40 wt %, were prepared with a twin‐screw extruder followed by hot press molding. The influence of the compatibilizer was also studied for PP/KF composite with 5 wt % maleated PP (MAPP). Water absorption testing was carried out at room temperature for 7 weeks. Tensile, flexural, and impact tests were also performed on control, wet, and re‐dried specimens. Increasing the fiber content resulted in higher water absorption and thickness swelling. The inferior mechanical properties of the wet composites were attributed to the effect of water, which deteriorates the interfacial properties of composites. On re‐drying, all properties were almost recovered because of the recovery of interfacial area as evident in scanning electron micrographs. Incorporation of the MAPP significantly improved the compatibility between the fiber and matrix and the mechanical properties of the composites compared with those without MAPP. It also diminished the water absorption as well as the related thickness swelling in the composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
94.
Poly(butylene succinate) (PBS) filled kenaf bast fiber (KBF) composites were fabricated via compression molding. The effects of KBF loading on the flexural and impact properties of the composites were investigated for fiber loadings of 10–40 wt %. The optimum flexural strength of the composites was achieved at 30 wt % fiber loading. However, the flexural modulus of the composites kept increasing with increasing fiber loading. Increasing the fiber loading led to a drop in the impact strength of about 57.5–73.6%; this was due to the stiff nature of the KBF. The effect of the fiber length (5, 10, 15, and 20 mm) on the flexural and impact properties was investigated for the 30 wt % KBF loaded composites. The composites with 10‐mm KBF showed the highest flexural and impact properties in comparison to the others. The inferior flexural and impact strength of the composites with 15‐ and 20‐mm KBF could be attributed to the relatively longer fibers that underwent fiber attrition during compounding, which consequently led to the deterioration of the fiber. This was proven by analyses of the fiber length, diameter, and aspect ratio. The addition of maleated PBS as a compatibilizer resulted in the enhancement of the composite's flexural and impact properties due to the formation of better fiber–matrix interfacial adhesion. This was proven by scanning electron microscopy observations of the composites' fracture surfaces. The removal of unreacted maleic anhydride and dicumyl peroxide residuals from the compatibilizers led to better fiber–matrix interfacial adhesion and a slightly enhanced composite strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
95.
Hygrothermally decomposed polyurethane (HD‐PUR) was mixed up to 20 phr in epoxidized natural rubber (with 50 mol % epoxidation; ENR50) recipes, and the curing and mechanical behaviors were studied. Mechanical testing of the ENR50/HD‐PUR vulcanizates determined the tensile, tear, compression‐set, hardness, abrasion, hysteresis, and resilience properties. No significant changes were observed in the tensile properties with the incorporation of HD‐PUR. The ENR50 compounds showed an increase in compression set with increasing HD‐PUR content. Rubbers cured by a semi‐efficient vulcanization system gave the best overall performance. A further improvement in curing and mechanical properties was achieved by the carbon black grade N330 being replaced with a more active grade (N375). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2265–2276, 2002  相似文献   
96.
A new technique to provide melt elasticity using flexible fine fibers prepared from a polymer with high melting point is demonstrated. A polymer composite of poly(propylene) with a small amount of fine fibers of poly(butylene terephthalate) shows marked strain‐hardening behavior in elongational viscosity, i.e., a rapid increase in the transient elongational viscosity with time or strain. The blend also shows prominent normal stress difference at steady shear. These elastic properties have not been observed for polymer composites with rigid fibers and can be applicable to the modification of rheological properties and thus the improvement of processability.

  相似文献   

97.
Uncrosslinked and chemically crosslinked ethylene‐vinyl acetate copolymers (EVAs) with 5–25 volume percentages of zeolite were prepared in a melt‐mixing process and then compression‐molded on a hot‐press machine according to standard test specifications. The mechanical properties measured by tensile test showed a reduction in tensile strength and elongation at break with increasing zeolite content. However, an increasing trend was observed for tensile modulus with addition of zeolite. Experimental results for ultimate stress were compared with those from Pukanszky equation. The experimental data showed a good fit to the Pukanszky model. The improvement in the interfacial interaction for crosslinked composites was also confirmed by this model. Morphological changes of EVA/zeolite composites were analyzed by scanning electron microscopy (SEM). The fractured surface of the composites indicated more complex morphology at higher zeolite loading. The influence of crosslinking induced by 2 wt% of dicumyl peroxide on the properties of EVA/zeolite composites was also investigated. The crosslinked composites showed better tensile properties than the uncrosslinked ones, a result which might be an indication of enhanced interaction between the EVA and zeolite. Density measurements, gel content determinations, and Fourier transform infrared analyses were also performed to evaluate the crosslink content of the composites. The changes in the properties of chemically crosslinked EVA/zeolite composites were observed. Meanwhile, SEM micrographs of the crosslinked EVA/zeolite composites showed better interfacial strength between zeolite and the EVA matrix as compared to that of the uncrosslinked composites. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   
98.
Poly(lactic acid)/organo‐montmorillonite (PLA/OMMT) nanocomposites toughened with maleated styrene‐ethylene/butylene‐styrene (SEBS‐g‐MAH) were prepared by melt‐compounding using co‐rotating twin‐screw extruder followed by injection molding. The dispersibility and intercalation/exfoliation of OMMT in PLA was characterized using X‐ray diffraction and transmission electron microscopy (TEM). The mechanical properties of the PLA nanocomposites was investigated by tensile and Izod impact tests. Thermogravimetric analyzer and differential scanning calorimeter were used to study the thermal behaviors of the nanocomposite. The homogenous dispersion of the OMMT silicate layers and SEBS‐g‐MAH encapsulated OMMT layered silicate can be observed from TEM. Impact strength and elongation at break of the PLA nanocomposites was enhanced significantly by the addition of SEBS‐g‐MAH. Thermal stability of the PLA/OMMT nanocomposites was improved in the presence of SEBS‐g‐MAH. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
99.
A major problem in most natural rubber latex (NRL) commonly encountered like other polymer is susceptibility to mechanical properties and thermal degradation; particularly in thin film due to the presence of double bonds in the main chain. Therefore, it is desirable to seek for ways of improving these properties. Silica aerogel is a material with extraordinary properties was believed to have potential enhance properties in NRL films because of its high specific surface area. Therefore, based on the unique character of silica aerogel, NRL‐silica aerogel film was developed by latex compounding and dry coagulant dipping to form thin film where silica aerogel acts as filler. Silica aerogel, synthesized from rice husk was dispersed in a ball‐mill using distilled water for NRL compounding. Results indicate that increasing silica aerogel loading enhances the mechanical properties of the NRL‐silica aerogel film. Effects of postvulcanization processes were also investigated, whereby the best reinforcing effect was obtained at 4 phr silica aerogel loading with leaching postvulcanization condition. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
100.
Quantum chemical calculations were performed on ten thio compounds using semi-empirical method PM3 within program package of Material Studio 5.5. The effect of molecular structure on the corrosion inhibition efficiency was investigated using the quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, (LUMO–HOMO) energy gap, dipole moment (λ) and fraction of electron transfer (ΔN) were calculated and discussed. A relationship between the corrosion inhibition efficiency and several quantum parameters was established with coefficient correlation (R2) of 0.8894.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号