首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2456篇
  免费   116篇
电工技术   18篇
综合类   1篇
化学工业   608篇
金属工艺   40篇
机械仪表   31篇
建筑科学   75篇
矿业工程   3篇
能源动力   83篇
轻工业   425篇
水利工程   15篇
石油天然气   6篇
无线电   219篇
一般工业技术   284篇
冶金工业   512篇
原子能技术   15篇
自动化技术   237篇
  2023年   16篇
  2022年   61篇
  2021年   72篇
  2020年   48篇
  2019年   55篇
  2018年   58篇
  2017年   46篇
  2016年   72篇
  2015年   58篇
  2014年   94篇
  2013年   136篇
  2012年   102篇
  2011年   156篇
  2010年   123篇
  2009年   111篇
  2008年   128篇
  2007年   104篇
  2006年   71篇
  2005年   55篇
  2004年   54篇
  2003年   54篇
  2002年   44篇
  2001年   39篇
  2000年   32篇
  1999年   54篇
  1998年   178篇
  1997年   110篇
  1996年   65篇
  1995年   39篇
  1994年   35篇
  1993年   43篇
  1992年   16篇
  1991年   30篇
  1990年   13篇
  1989年   13篇
  1988年   16篇
  1987年   22篇
  1986年   16篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   12篇
  1981年   5篇
  1980年   7篇
  1979年   6篇
  1978年   6篇
  1977年   15篇
  1976年   19篇
  1974年   7篇
  1971年   5篇
排序方式: 共有2572条查询结果,搜索用时 15 毫秒
91.
This article considers the interaction between additives that occur during the stabilization process. The simultaneous effects of the additives and associated interactions on melt processing stability and processing discoloration were of particular interest. Melt stability is an important factor to consider because physical changes in the processed polymer can occur during the compounding and fabrication steps. Furthermore, discoloration is one of the most important problems affecting commercial polymers. Most discoloration manifests itself as yellowing, especially in the case of polyolefins. Although yellowing can often be associated with degradation processes caused by various agents, such as light or heat, this is not always the case; yellowing can also be due to the interaction of additives in the stabilizer packages. Blends of primary antioxidants (AOs), secondary AOs, and hindered amine light stabilizers have been studied with the intention of further improving stabilization performance together with cost reduction of the stabilized polymer. Although synergism between AOs and a stabilizer is fairly common, antagonism was also observed in terms of melt flow protection and in color stability in some of the AOs tested. The effects of a range of thermal and light stabilizers on the melt stability (investigated via multiple pass extrusion) and color stability of three different polyethylenes (PEs) were examined. The PEs varied in terms of the catalyst system used to synthesize the polymers and included a high‐density polyethylene (HDPE) produced by using a chromium‐based Phillips catalyst and two linear low‐density polyethylenes (LLDPEs) produced via chromium‐based metallocene and titanium‐based Ziegler‐Natta catalysts. The apparent lack of influence of polymerization catalyst system on the mode of stabilizer interaction should lead to the reassessment of stabilizer formulation strategies in relation to PE type/catalyst system and associated commercial/economic considerations. J. VINYL ADDIT. TECHNOL., 22:117–127, 2016. © 2014 Society of Plastics Engineers  相似文献   
92.
93.
Metastable tetragonal ZrO2 phase has been observed in ZrO2–SiO2 binary oxides prepared by the sol–gel method. There are many studies concerning the causes of ZrO2 tetragonal stabilization in binary oxides such as Y3O2–ZrO2, MgO–ZrO2, or CaO–ZrO2. In these binary oxides, oxygen vacancies cause changes or defects in the ZrO2 lattice parameters, which are responsible for tetragonal stabilization. Since oxygen vacancies are not expected in ZrO2–SiO2 binary oxides, tetragonal stabilization should just be due to the difficulty of zirconia particles growing in the silica matrix. Furthermore, changes in the tetragonal ZrO2 crystalline lattice parameters of these binary oxides have recently been reported in a previous paper. The changes of the zirconia crystalline lattice parameters must result from the chemical interactions at the silica–zirconia interface (e.g., formation of Si–O–Zr bonds or Si–O groups). In this paper, FT-IR and 29Si NMR spectroscopy have been used to elucidate whether the presence of Si–O–Zr or Si–O is responsible for tetragonal phase stabilization. Moreover, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy have also been used to study the crystalline characteristics of the samples.  相似文献   
94.
Effects of Dry Grinding on the Structural Changes of Kaolinite Powders   总被引:2,自引:0,他引:2  
The present study examined the effects of dry grinding, using ball-milling, on the structure of reference well-crystallized (KGa-1) and poorly crystallized (KGa-2) kaolinite powders from Georgia. Grinding produced a strong structural alteration, mainly along the c axis, resulting in disorder and total degradation of the crystal structure of the kaolinite and the formation of an amorphous product. The surface area increased with grinding time, mainly in KGa-2 (maximum value 50.27 m2/g), a result associated with particle-size reduction. These particles became more agglomerated with grinding, and the surface area decreased after 30 min, as confirmed by scanning electron microscopy and particle-size-distribution analysis. There was a limit to particle-size reduction with grinding time. When grinding time was increased, the original endothermic differential thermal analysis (DTA) effects of dehydroxylation in both samples shifted to lower temperatures, decreased in intensity, then disappeared completely after 120 min of grinding. The temperature of the characteristic first exothermic effect shifted slightly to lower temperatures with grinding, although the DTA effects did not increase with grinding time in either kaolinite sample, at least up to 325 min. The amorphous, mechanically activated kaolinite converted into low-crystalline mullite nuclei at a lower temperature than did the unground samples, as deduced by thermal and X-ray observations. This effect was especially important for the KGa-2 sample. Grinding did not seem to influence the formation of silicon-aluminum spinel from kaolinite. The present results may explain why ground kaolinite samples prepared via different routes—e.g., with differences in grinding—behave differently during high-temperature transformations, as reported in the related literature.  相似文献   
95.
The catalytic performance of mono- and bimetallic Pd (0.6, 1.0 wt.%)–Pt (0.3 wt.%) catalysts supported on ZrO2 (70, 85 wt.%)–Al2O3 (15, 0 wt.%)–WOx (15 wt.%) prepared by sol–gel was studied in the hydroisomerization of n-hexane. The catalysts were characterized by N2 physisorption, XRD, TPR, XPS, Raman, NMR, and FT-IR of adsorbed pyridine. The preparation of ZrW and ZrAlW mixed oxides by sol–gel favored the high dispersion of WOx and the stabilization of zirconia in the tetragonal phase. The Al incorporation avoided the formation of monoclinic-WO3 bulk phase. The catalysts increased their SBET for about 15% promoted by Al2O3 addition. Various oxidation states of WOx species coexist on the surface of the catalysts after calcination. The structure of the highly dispersed surface WOx species is constituted mainly of isolated monotungstate and two-dimensional mono-oxotungstate species in tetrahedral coordination. The activity of Pd/ZrW catalysts in the hydroisomerization of n-hexane is promoted both with the addition of Al to the ZrW mixed oxide and the addition of Pt to Pd/ZrAlW catalysts. The improvement in the activity of Pd/ZrAlW catalysts is ascribed to a moderated acid strength and acidity, which can be correlated to the coexistence of W6+ and reduced-state WOx species (either W4+ or W0). The addition of Pt to the Pd/ZrAlW catalyst does not modify significantly its acidic character. Selectivity results showed that the catalyst produced 2MP, 3MP and the high octane 2,3-dimethylbutane (2,3-DMB) and 2,2-dimethylbutane (2,2-DMB) isomers.  相似文献   
96.
The present study was conducted to know the possible influence of the seed treatment, method of extraction and geographical origin on the quality and chemical composition of argan oil. Artisanally and semiautomatically extracted argan oils, from roasted and unroasted seeds, from interior and coast areas, were studied. The quality parameters analyzed were acid value, peroxide value, K232 and K270, triacylglycerols and fatty acid composition, polar compounds, total phenols, tocopherol content and oil stability index (OSI). Seed treatment and extraction method showed a higher influence on quality parameters than geographical area; the quality parameters of the different oils were discussed. The total phenolic content in all analyzed samples was lower than 10 ppm. γ‐Tocopherol was the major tocopherol (84.4–86.4%) with a high contribution to the total tocopherol content (383–485 ppm). The OSI of the argan oil samples were well correlated (R = 0.97) with the tocopherol contents. The argan oil samples obtained from roasted seeds presented higher stability (26–38 h) than the oils from unroasted seeds (16–32 h).  相似文献   
97.
The camber of asymmetric laminates has been experimentally measured and predicted. Two cases are distinguished: (i) sintering of a viscous layer on a viscous substrate and (ii) sintering of a viscous layer on an elastic substrate. In the first case, particular attention is paid to the microstructure of the shrinking layer: a gradient in porosity as well as in pore size has been found along the thickness. Microstructural observations have been rationalized through an asymmetric stress state in the shrinking layer. In the second case, substrate cracking is predicted as function of Young's modulus and thickness ratio of the elastic substrate.  相似文献   
98.
Fracture Statistics Based on Pore/Grain-Size Interaction   总被引:1,自引:0,他引:1  
The statistics of fracture in ceramics are discussed based on a model that describes crack instability that occurs at a configuration of a microcrack positioned in the stress-concentrating effect of a large pore. The interaction of pore size and grain-size distribution is considered, and the effect of a locally varying stress field is included. Results are presented as predictions of the critical pore size and microcrack size that cause fracture for the two assumed average grain sizes of 1 and 5 µm.  相似文献   
99.
Heterotrinuclear Ti–Cu–Ru (5) and heterotetranuclear Ti–Cu–Pt–Fe (7) containing complexes are accessible by using {[Ti](CCtBu)2}CuMe (1) ([Ti]=(η5-C5H4SiMe3)2Ti) as key molecule; in 5 and 7, the corresponding early and late transition metal atoms are linked by π-conjugated organic moieties.  相似文献   
100.
Ferroptosis is gaining followers as mechanism of selective killing cancer cells in a non-apoptotic manner, and novel nanosystems capable of inducing this iron-dependent death are being increasingly developed. Among them, polydopamine nanoparticles (PDA NPs) are arousing interest, since they have great capability of chelating iron. In this work, PDA NPs were loaded with Fe3+ at different pH values to assess the importance that the pH may have in determining their therapeutic activity and selectivity. In addition, doxorubicin was also loaded to the nanoparticles to achieve a synergist effect. The in vitro assays that were performed with the BT474 and HS5 cell lines showed that, when Fe3+ was adsorbed in PDA NPs at pH values close to which Fe(OH)3 begins to be formed, these nanoparticles had greater antitumor activity and selectivity despite having chelated a smaller amount of Fe3+. Otherwise, it was demonstrated that Fe3+ could be released in the late endo/lysosomes thanks to their acidic pH and their Ca2+ content, and that when Fe3+ was co-transported with doxorubicin, the therapeutic activity of PDA NPs was enhanced. Thus, reported PDA NPs loaded with both Fe3+ and doxorubicin may constitute a good approach to target breast tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号