首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42904篇
  免费   15238篇
  国内免费   65篇
电工技术   797篇
综合类   29篇
化学工业   18330篇
金属工艺   414篇
机械仪表   967篇
建筑科学   1810篇
矿业工程   23篇
能源动力   1205篇
轻工业   7730篇
水利工程   352篇
石油天然气   124篇
武器工业   1篇
无线电   7579篇
一般工业技术   12655篇
冶金工业   697篇
原子能技术   78篇
自动化技术   5416篇
  2024年   33篇
  2023年   256篇
  2022年   510篇
  2021年   1018篇
  2020年   1919篇
  2019年   3671篇
  2018年   3590篇
  2017年   3820篇
  2016年   4285篇
  2015年   4202篇
  2014年   4176篇
  2013年   5406篇
  2012年   2927篇
  2011年   2606篇
  2010年   2787篇
  2009年   2652篇
  2008年   2137篇
  2007年   1985篇
  2006年   1671篇
  2005年   1401篇
  2004年   1381篇
  2003年   1320篇
  2002年   1256篇
  2001年   1106篇
  2000年   1078篇
  1999年   470篇
  1998年   84篇
  1997年   61篇
  1996年   42篇
  1995年   29篇
  1994年   27篇
  1993年   35篇
  1992年   22篇
  1991年   25篇
  1990年   23篇
  1989年   20篇
  1988年   11篇
  1987年   14篇
  1986年   14篇
  1985年   13篇
  1984年   13篇
  1983年   11篇
  1982年   11篇
  1981年   8篇
  1980年   8篇
  1978年   9篇
  1977年   12篇
  1976年   11篇
  1975年   8篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
963.
Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO2 sub‐micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd‐doped TiO2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin–lattice and spin–spin relaxation times. Density functional theory calculations show that Gd3+ ions introduce impurity energy levels inside the bandgap of anatase TiO2, and also create dipoles that are beneficial for charge separation and decreased electron–hole recombination in the doped lattice. The Gd‐doped TiO2 nanobeads (NBs) show enhanced ability for ROS monitored via ?OH radical photogeneration, in comparison with undoped TiO2 nanobeads and TiO2 P25, for Gd‐doping up to 10%. Cellular internalization and biocompatibility of TiO2@x Gd NBs are tested in vitro on MG‐63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation.  相似文献   
964.
Uniquely structured CoSe2–carbon nanotube (CNT) composite microspheres with optimized morphology for the hydrogen‐evolution reaction (HER) are prepared by spray pyrolysis and subsequent selenization. The ultrafine CoSe2 nanocrystals uniformly decorate the entire macroporous CNT backbone in CoSe2–CNT composite microspheres. The macroporous CNT backbone strongly improves the electrocatalytic activity of CoSe2 by improving the electrical conductivity and minimizing the growth of CoSe2 nanocrystals during the synthesis process. In addition, the macroporous structure resulting from the CNT backbone improves the electrocatalytic activity of the CoSe2–CNT microspheres by increasing the removal rate of generated H2 and minimizing the polarization of the electrode during HER. The CoSe2–CNT composite microspheres demonstrate excellent catalytic activity for HER in an acidic medium (10 mA cm?2 at an overpotential of ≈174 mV). The bare CoSe2 powders exhibit moderate HER activity, with an overpotential of 226 mV at 10 mA cm?2. The Tafel slopes for the CoSe2–CNT composite and bare CoSe2 powders are 37.8 and 58.9 mV dec?1, respectively. The CoSe2–CNT composite microspheres have a slightly larger Tafel slope than that of commercial carbon‐supported platinum nanoparticles, which is 30.2 mV dec–1.  相似文献   
965.
Wearable plasmonic devices combine the advantages of high flexibility, ultrathinness, light weight, and excellent integration with the optical benefits mediated by plasmon‐enhanced electric fields. However, two obstacles severely hinder further developments and applications of a wearable plasmonic device. One is the lack of efficient approach to obtaining devices with robust antimotion‐interference property, i.e., the devices can work independently on the morphology changes of their working structures caused by arbitrary wearing conditions. The other issue is to seek a facile and high‐throughput fabrication method to satisfy the financial requirement of industrialization. In order to overcome these two challenges, a functional flexible film of nanowire cluster is developed, which can be easily fabricated by taking the advantages of both conventional electrochemical and sputtering methods. Such flexible plasmonic films can be made into wearable devices that work independently on shape changes induced by various wearing conditions (such as bending, twisting and stretching). Furthermore, due to plasmonic advantages of color controlling and high sensitivity to environment changes, the flexible film of nanowire cluster can be used to fabricate wearable items (such as bracelet, clothes, bag, or even commercial markers), with the ability of wireless visualization for humidity sensing.  相似文献   
966.
A synthesis strategy for the preparation of trimetallic PtCoFe alloy nanoparticle superlattices is reported. Trimetallic PtCoFe alloy monolayer array of nanoparticle superlattices with a large density of high index facets and platinum‐rich surface are successfully prepared by coreduction of metal precursors in formamide solvent. The concentration of cetyl trimethyl ammonium bromide plays a vital role for the formation of a monolayer array of nanoparticle superlattices, while the size of nanoparticles is determined by NaI. The prepared monolayer array of nanoparticle superlattices is the superior catalyst for oxygen reduction reaction as well as for ethanol oxidation owing to their specific structural and compositional characteristics.  相似文献   
967.
There is a pressing need to develop more effective therapeutics to fight cancer. An idyllic chemotherapeutic is expected to overcome drug resistance of tumors and minimize harmful side effects to healthy tissues. Antibody‐functionalized porous silicon nanoparticles loaded with a combination of chemotherapy drug and gold nanoclusters (AuNCs) are developed. These nanocarriers are observed to selectively deliver both payloads, the chemotherapy drug and AuNCs, to human B cells. The accumulation of AuNCs to target cells and subsequent exposure to an external electromagnetic field in the microwave region render them more susceptible to the codelivered drug. This approach represents a targeted two‐stage delivery nanocarrier that benefits from a dual therapeutic action that results in enhanced cytotoxicity.  相似文献   
968.
High‐quality and large‐area molybdenum disulfide (MoS2) thin film is highly desirable for applications in large‐area electronics. However, there remains a challenge in attaining MoS2 film of reasonable crystallinity due to the absence of appropriate choice and control of precursors, as well as choice of suitable growth substrates. Herein, a novel and facile route is reported for synthesizing few‐layered MoS2 film with new precursors via chemical vapor deposition. Prior to growth, an aqueous solution of sodium molybdate as the molybdenum precursor is spun onto the growth substrate and dimethyl disulfide as the liquid sulfur precursor is supplied with a bubbling system during growth. To supplement the limiting effect of Mo (sodium molybdate), a supplementary Mo is supplied by dissolving molybdenum hexacarbonyl (Mo(CO)6) in the liquid sulfur precursor delivered by the bubbler. By precisely controlling the amounts of precursors and hydrogen flow, full coverage of MoS2 film is readily achievable in 20 min. Large‐area MoS2 field effect transistors (FETs) fabricated with a conventional photolithography have a carrier mobility as high as 18.9 cm2 V?1 s?1, which is the highest reported for bottom‐gated MoS2‐FETs fabricated via photolithography with an on/off ratio of ≈105 at room temperature.  相似文献   
969.
Recently, polymer‐coated magnetite (Fe3O4) nanoparticles (NPs) are extensively studied for applications in therapeutics or diagnostics using photothermal effect. Therefore, it is essential to understand the interactions between Fe3O4 NPs and polymers when optical stimuli are applied. Herein, the photonic reactions of Fe3O4 NPs and polymer composites upon application of a 780 nm multiphoton laser are analyzed. The photonic reactions produce unique results including fluorescence from conformationally changed polymer and low‐temperature phase transformation of Fe3O4 NPs. Typically, π‐conjugated chains are formed, inducing fluorescence through a series of main and side‐chain cleavage reactions of polymers with the aliphatic chain. In addition, fluorescence is detected in the cellular system by photonic reactions between Fe3O4 NPs and biomolecules. After multiphoton laser irradiation, light emission is detected near the intracellular Fe3O4 NPs, and a stronger intensity is observed in large‐sized NPs.  相似文献   
970.
Gold‐coated nanodisk arrays of nearly micron periodicity are reported that have high figure of merit (FOM) and sensitivity necessary for plasmonic refractometric sensing, with the added benefit of suitability for surface‐enhanced Raman scattering (SERS), large‐scale microfabrication using standard photolithographic techniques and a simple instrumental setup. Gold nanodisk arrays are covered with a gold layer to excite the Bragg modes (BM), which are the propagative surface plasmons localized by the diffraction from the disk array. This generates surface‐guided modes, localized as standing waves, leading to highly confined fields confirmed by a mapping of the SERS intensity and numerical simulations with 3D finite element method. The optimal gold‐coated nanodisk arrays are applied for refractometric sensing in transmission spectroscopy with better performance than nanohole arrays and they are integrated to a 96‐well plate reader for detection of IgY proteins in the nanometer range in PBS. The potential for sensing in biofluids is assessed with IgG detection in 1:1 diluted urine. The structure exhibits a high FOM of up to 46, exceeding the FOM of structures supporting surface plasmon polaritons and comparable to more complex nanostructures, demonstrating that subwavelength features are not necessary for high‐performance plasmonic sensing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号